KiSS KML Developer Support Tools

(Taken from site: http://dev.kiss-technology.com)
This is a temporary page that will hopefully help some of the people developing their own stuff for their KiSS DVD player.

To convert graphics into something that will look good on the text layer of this player, you can use this tool.

You will find the documentation on the command line usage in the menu to the left.

TGA2GIF latest binaries

Download tga2gif for windows (58 kb)
Download tga2gif for linux (56 kb)
Download tga2gif for freebsd (44 kb)

Batch conversion package

Download as rar (512 kb) or zip (630 kb

Getting started

What is KML

A KML document is a valid XML file. It works in the same way as a simple html document, but with some differences:

· KML text and graphics doesn't flow and word-wrap like html text. You must use coordinates for everything

· There is not stylesheets in KML.

· There is no javascript or other scripting language in KML.

· There are no input types in the currently available KML language (but will change in the future.)

· When going from one page to another, all graphics stays on the screen untouched. Blanking screen contents mu be specified explicitly.

· KML has special abilities to hide, unhide and change screen contents dynamically that resemble javascript functionality.

· Playing back media files is easy. You only need one tag, and checking browser/media player versions is usually not necessary as all playback is handled by hardware.

Setting up the server

Outputting KML is usually easiest to do from some kind of scripting language like PHP, Perl or ASP. You can use any server type you wish to generate these pages.

· The server must make a page called "index.kml" available on port 8888.

Accessing the server

For the DP-600 follow this guide. For other KiSS players the approach is similar:

· Then press MENU, goto "Enter IP address of PC-Link Host" and enter the IP address of the web server and press OK. You only need to do this once, as the player will remember your IP address even after a power-down.

· Now choose "PC-Link KML Start Page". This will send you to
http://ip address:8888/index.kml
You should now see your index.kml page.

Graphics

The DP-558 has two graphics layers. The background layer is either used for media playback or to display a static JPEG image in 720x576 resolution. The foreground layer is where you have the dynamic site content which consists of gif images in a special palette, text and rectangles. The foreground layer can be transparent, opaque or even semi-transparent. We can offer a special cross-platform conversion tool written in C for this conversion, or i can explain to you how to do such a color quantization.

Audio

KML pages unfortunately cannot do real sound effects, but you can use the PLAYMEDIA tag to play back mp3 or ogg files to create audio or you can even play back a piece of video in the background layer while KML is still active on the foreground layer.

KML 2.4

Programmer's Reference Manual

Version 0.3 - 2004-10-10 - Sonny Windstrup, Joachim Michaelis
Version 0.4 - 2007-02-06 - Joachim Michaelis

This document is also available in a paged version
· DRAFT

· SPECIFICATIONS SUBJECT TO CHANGE

This document is still rather new. If you find anything wrong or missing, please e-mail me at joamicha(at)cisco.com

This document is relevant for:

· KiSS 1600

· KML capable Linksys products

· KML capable Cisco products

Legal stuff

KML (KiSS Markup Language) is a proprietary scripting language developed and owned by KiSS Technology. KML is still very much "in the works", and the specifications are accordingly still subject to change. This document may be considered a Developer's Alpha Release, and must be considered confidential. It may not be duplicated or re-distributed in any way without prior permission from KiSS Technology.

Pre-release developer contact information:

	Joachim Michaelis
KiSS Technology A/S
Slotsmarken 10
DK-2970 Hørsholm
Denmark

	Phone (direct) :
Phone (main) :
Fax (main) :
Email :
	(+45) 45 17 65 85
(+45) 45 17 00 00
(+45) 45 17 00 60
joamicha(at)cisco.com

Introduction

What is KML?

KML was initially developed by KiSS Technology as a simple and efficient platform for interactive online applications on low-cost embedded devices and set-top boxes (STBs). We had already built a network enabled DVD player, the KiSS DP-500 (which was the World's first and so far (Sept 2003) the World's only DivXTM certified DVD player!) - The device was initially capable of using its network connection for retrieval and playback of local media content (MPEG4, MP3, JPEGs, etc) shared from a PC on the same network; a hugely popular feature.

The product had to have online applications as an obvious next step up from the local in-home network services. But how to implement them? We considered, most obvious, embedding a 'thin' web client such as Opera or Mozilla Firebird. Other STB manufacturers have tried this approach with limited success.

If such an STB web browser could be succesfully implemented, it would have many useful advantages in areas of portability, code maturity, javascript support and general availability of pre-existing content and online applications. However, the web-browser approach was abandoned when we determined that conventional web technology simply don't work very well for STB use. Limited guaranteed TV screen resolution must be considered, as well as numerous other annoyance factors and concerns compromising the would-be usefulness of the solution:

· Color gamut & video gamma issues (PC sRGB vs. TV PAL/NTSC/SECAM)

· Pixel aspect issues (PC square pixels vs. NTSC/PAL/4:3/16:9 tall/wide pixels)

· Input method issues (Text fields, Scrollbars, Frames, Multi-select combo boxes, etc)

· Open-source plugin availability and code licensing issues.

· Cost of porting client to proprietary STB platform

· Client complexity, load time and large CPU/memory demands

· Lack of precise pointing device (no mouse; cursor buttons only)

By contrast, DVD-like menus and teletext content works well on a STB. The DVD menus are pretty simple, and are designed to be usable on a lowest-common-denominator TV-set, navigated with basically just the cursor keys on a remote control. DVD graphics can easily be designed to look good on a TV screen using correct gamma, pixel aspect, color space and detail level.

KML is designed with these considerations in mind. KML had to be TV-screen compatible and designed to work natively with basic remote control operation. The KML baseline specs are very similar to DVD content : The DP-500 implementation of KML has a pixel resolution and aspect ratio identical to NTSC DVD content (720 x 480 pixels @ 4:3 Pixel aspect (4/3)/(720/480) =~ 0.889 ; 16:9 Pixel aspect (16/9)/(720/480) =~ 1.185). Both PAL and NTSC systems use the same pixel resolution on this platform; in PAL mode the video buffers are hardware scaled from NTSC resolution to fit the screen (480 becomes 576 visible scanlines - KML is intended to ultimately not be client implementation specific, but at present it remains tied quite firmly with the KiSS EM85xx/EM86xx hardware platform, namely the KiSS DP-500 and derived products.)

The whole of the screen area can be controlled, including the overscan area. For these products, pixel coordinates begins at 0,0 (top left) and ends at 719,479 (bottom right). Overscan is implemented differently on every TV set, so you have to use very conservative allowances for the content area of the screen. Rules of thumb for designing content is to keep text and important graphical elements within the so-called 'title safe' area on a TV screen, which is the middle 80%. (subtract 10% of the screen size from either side and top and bottom). The actual screen edge usually occurs around the Action Safe border which extends to the middle 90% of the display area. Adobe Premiere and AfterEffects both have a title/action-safe overlay box in their preview windows, which may be helpful for content design.

The KiSS EM85xx hardware has two video buffers; one for overlay graphics (the OSD - On Screen Display buffer) and one for video/background art (YUV, or video buffer). The OSD buffer consists of a 720x480 pixel 8-bit bitmap spanning the entire scan area of the display. Each pixel may have one of 256 colors. Each of the 256 colors are index-mapped to a set of corresponding RGB 8-bit values and a 4-bit alpha (opacity) value, which is used to control OSD layer pixel transparency (zero alpha allows unobscured see-thru to the video layer beneath). A 'blank' OSD buffer is simply filled with color zero, which has 0% alpha opacity, making it effectively invisible.

The default OSD 8-bit palette has all primary and secondary colors with intensity and saturation gradients, as well as a mix of generally useful hues and gradients. Many of the colors exist in semi-transparent versions, and Photoshop color map files and OSD graphics processing macros are available for content developers. OEMs may design their own color palettes. Colors may also be specified as hex triplets (#RRGGBB, web/x-windows style) which are then mapped by the client to the closest matching color index value.

KML consists of an XML format data stream retrieved and parsed by a KML client. The data stream can be retrieved from a local file or (more commonly) an online host (via HTTP or HTTPS). The data stream contains instructions for the client to carry out. Typical simple actions/instructions:

· Draw text/rectangles/lines/images,etc on the OSD (graphics) layer.

· Draw an image/RGBgradient/solid fill in the background layer.

· Control text appearing in device alphanumeric fluorescent device display.

· Play/stop/mute media stream from host or file system (audio, video, whatever)

· Load KML document from host or file system [replace current KML buffer]

· Make system calls (when applicable security rules permits)

· Activate menu items, control volume, etc.

Notice, loading a KML "page" does not imply that the client clears the graphics display. Instead, the host has to tell the client specifically to draw a solid filled rectangle spanning the screen with the desired color of transparency in order to clear the screen. This is intentional and serves to allow a response from a host application to only update a portion of the screen.

Other types of instructions define event-triggered action blocks. These are simply sequences of instructions like those above, which are performed when certain events occur, such as button presses on the remote control, or the activation of a highlighted menu item. Actions can also be timed to occur at intervals, after a delay, when a page is loaded or unloaded, when a menuitem is highlighted or becomes inactive, or when an audio or video stream stops. A KML action block can make the client load a new KML document for parsing, or render graphics to indicate a state change on a menu item, or control the playback of audio and video streams, etc.

Unlike HTML, KML clients aren't themselves supposed to organize content and format quantities of text and embedded graphical content. The host system must manage the entire session and specify pixel coordinates for every element that is to be rendered on the client system screen. If you have content spanning more than a page, this is achived using simulated scroll (retrieving a KML page redrawing the portion of the content that is supposed to move, etc).

The current practical implementation solution we use for our own KML applications involves managing virtual screens on the object-oriented host system. A ghost cursor controls the placement of the individual objects, so the content author need not worry about having to keep track of these numbers. This situation is not dissimilar to that of designing an ANSI-type terminal system where the host system also controls screen coordinates of rendered text.

Obviously, there are advantages and disadvantage to this model: KML benefits precision control of the user experience - all clients should see the precise same layout and design. The downside is obviously, the client is 'dumb' and by design incapable of reformatting received content intelligently. It is not really a problem since the host system should know enough about the client to support the session and provide the needed intelligence. (The client tells the host system about its own capabilities.) Applications can thus be designed to accomodate a variety of different client types.

The long-term goal is to remove all of the client specific details from application design by the use of an sophisticated application support layer that sits between the client and the application. This layer is presently still being developed by KiSS, but a simple prototype of the concept is freely available for content developers to examine.

Combined, these features permit the implementation of simple but very persuasive applications.

A typical application could be a video on demand service, where a host application on a webserver can present the available video content by generating menus in the form of KML pages which are rendered on the client's OSD graphics layer, perhaps on top of live video loops retrieved from in-player harddisk cache, which could be used for motion background art. By navigating the different KML pages with the remote control, the user can then select a video stream which can subsequently be purchased/activated with a KML scripted action tying in with local DRM/key-exchange functions.

Suggested types of applications suitable for KML implementation:

· EPG (Electronic programming guide - tie in with recorder engine)

· Interactive television programming

· Catalog of available content (VOD, streaming video/audio - webradio)

· Hotel facility guide, entertainment and room service front-end.

· Kiosk presentations (combine with touch screen interface)

· Info channel / news bulletin / status monitor

· etc.

A KML application may be developed using standard off-the-shelf components, and can be hosted on any webserver platform or file system. KML documents can be retrieved by the client using plain vanilla HTTP GETs on port 80. For OEM products, KML documents can be embedded in firmware ROM or system partition on harddisk. We have developed a number of PHP-based tools for assisting development, hosting and deployment of KML-based content, services and applications. These will be made available shortly.

The future

In it's current design, KML can and will be expanded to meet the requirements of both internal development, OEMs and 3rd party developers. The upgrade from KML 2.0 to 2.4 represents such an upgrade, adding all functions required for launching a full-blown video-on-demand service featuring secure payment, user login and playback of DRM protected content.

That said, KML is currently far from perfect. Development is tedious. All logic has ot be performed on the server side, making KML applications somewhat slowly reacting and heavy on on server. KML started out as a quick solution to presenting more or less static data on the screen. With the growing complexity of the applications developed in KML and the increasing need for dynamic content and user interaction, the static XML-based nature of KML is reaching it's limit.

It is becoming more and more obvious that the solution is to step away from the XML based structure and use a real scripting language as the foundation of KML. Possible scripting languages considered so far are Javascript or Lua. As opposed to html the javascript would be communicating directly with the underlying architechture instead of addressing an html/xml document though some horrible DOM-like method.

KML document anatomy

KML is implemented as well-formed XML documents with a number of levels of nodes and subnodes describing the client commands. There are currently still no officially endorsed DTDs or schemas provided by KiSS to validate KML documents. Such will be made available when language specifications stabilize.

Quick primer on XML:
http://studio.tellme.com/general/xmlprimer.html

KMLPAGE The KML page should have a proper XML header (UTF-8 encoding recommended) followed by the container tag. This is the KML document root node. Everything else KML related in the document must be attached to this node, or a chain of nodes rooted in this tag.

Sample valid KML page:

	<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<KMLPAGE version="2.4">

(...page content...)

</KMLPAGE>

Example:

	<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<KMLPAGE version="2.4">

<BACKGROUND vgradient="0,0,0-32,64,96" />
<FILLRECT coords="0,0,720,576" pen="0" />
<TEXT coords="60,60" font="0" pen="255">Hello world!</TEXT>

</KMLPAGE>

The above very simple example renders a blue screen fading to black, with a plain white text in the top left hand corner stating "Hello World" (Fig. 1).

The BACKGROUND item overwrites the background layer with the black-blue gradient. The FILLRECT item overwrites the 8-bit foreground layer with pen 0 (transparent). The TEXT item prints the text with font 0 (normal sized letters) and pen 255 (white). These items are all in the main part of the KML page. This means, they're executed as the page is parsed.

There are no events of any kind on this page, which makes it a dead end. You can basically only press STOP, which shuts down the KML client and reverts the device to normal operation.

Usually, KML documents have at least some actions and events associated with remote button presses so that interactive operation is possible. We recommend that pages on logical dead-end paths should be equipped with at least some kind of means for returning the user to the previous page they came from.

Fig. 2 shows logical KML document structure.

Order of Execution

The main part of a KML page is parsed top-down once the KML page is read by the KML "browser". Action blocks encapsulated by a <![CDATA[]]> construction are not parsed at all at this point, so a misspelling or syntax error inside an action block is not discovered when loading a page. Only once you activate the specific action block, the KML inside the CDATA part is parsed. You may want to keep this in mind when testing your KML pages.

KML supports variables and setting up events that are called once these variables are set. Due to the top-down order of execution, a variable placed above a corresponding event action block will not get called. If you place the variable change below (after) the action definition, it will work.

Event Types and Typical Use

KML is able to react on different kinds of events. These events have pieces of KML inside a CDATA construction, which is evaluated once the event it called. The different event types are:

· OnClick
Assigns an action directly to a button on the remote control.

· OnTimer and OnInterval
If you need things to happen after a certain period of time, use the <ONTIMER> tag. For repeated execution use the <ONINTERVAL> tag.

· On_Event
Used to call an event whenever a specific variable changes its contents.

· OnMetaData
Used to update album, artist and similar info when playing a radio station.

· OnMediaStopped
This is called when audio or video playback stops.

· OnUnload
Called as the first thing, once something causes you to leave a KML page. This event can be cleverly used to display a "please wait" sign while waiting for the next page to load. You can also place a <STOPMEDIA> tag here to stop any playing media.

Simple KML Commands

The commands in this section can all be attached to either the main KMLPAGE node or any of the action blocks on the miscellaneous event nodes.

GOTO

Does the following:

1. Cancels all events associated with current KML document (except ONUNLOAD)

2. Excecutes ONUNLOAD event action block (if present)

3. Unloads (discards) current KML document

4. Loads new KML document.

Notes:

Just before unloading present document, ONUNLOAD event action block is executed (if present). Any document retrieved with GOTO will be parsed as a KML document regardless of mimetype and file extension.

Usage:

	<GOTO href="destination" />

Parameters:

· href
Location of KML document to be loaded [opened].

Example:

	<GOTO href="http://www.host.com/kml/page2.xml" />

FILLRECT

Draws solid filled rectangle on graphics layer.

Notes:

Please refer to appendix C for color palette table and 'pen' parameter syntax.

Usage:

	<FILLRECT coords="x,y,w,h" pen="color" />

Parameters:

· coords
Placement and size of filled rectangle.

· pen
Color or palette index.

Parameter data for "coords":

x
Pixel X coordinate of top-left corner
y
Pixel Y coordinates of top-left corner
w
Pixel Width of rectangle
h
Pixel Height of rectangle

Example:

	<FILLRECT coords="100,100,400,100" pen="255" />
<FILLRECT coords="150,150,200,200" pen="16" />

Draws a 200 x 200 pixel black solid rectangle on top of an 400 x 100 white solid rectangle (Fig. 3).

RECT

Draws rectangle (1 pixel line diameter) on graphics layer.

Notes:

Single-pixel horizontal lines flickers on interlaced TVs. Recommended design practice is to make horizontal lines at least two pixels in height. Please refer to appendix C for color palette table and 'pen' parameter syntax.

Usage:

	<RECT coords="x,y,w,h" pen="color" />

Parameters:

· coords
Placement and size of rectangle.

· pen
Color or palette index.

Parameter data for "coords":

x
Pixel X coordinate of top-left corner
y
Pixel Y coordinates of top-left corner
w
Pixel Width of rectangle
h
Pixel Height of rectangle

Example:

	<RECT coords="100,100,400,100" pen="255" />
<RECT coords="150,150,200,200" pen="16" />

Draws a 200 x 200 pixel black rectangle on top of an 400 x 100 white rectangle (Fig. 3).

LINE

Draws a 1 pixel thick line on the graphics layer.

Notes:

Single-pixel horizontal lines flickers on interlaced TVs. Recommended design practice is to make horizontal lines at least two pixels in height. Please refer to appendix C for color palette table and 'pen' parameter syntax.

Usage:

	<LINE coords="x1,y1,x2,y2" pen="color" />

Parameters:

· coords
Start and end coordinates of the line.

· pen
Color or palette index.

Parameter data for "coords":

x1
Pixel X coordinate of line start
y1
Pixel Y coordinates of line start
x2
Pixel X coordinate of line end
y2
Pixel Y coordinates of line end

FIP

Replaces message on alphanumeric fluorescent display on device front. The front display capabilities vary from device from device, but 7-bit ascii is guaranteed. Using more characters outside this range may work, but you should test on the desired product first.

Usage:

	<FIP [speed="a"] [intensity="b"]> (text) </FIP>

Parameters:

· speed
(a) - For scrolling messages (texts longer than available display space) number of 'ticks' between updating scroll position. Each tick is about 1/10 second. Thus, a scroll speed of 2 means at every other 'tick' the scroll message advances one position. If parameter is omitted, assumed to be 5 (~ 0.5 sec between scroll position advance)

· intensity
(b) - The VFD display om the DP-500/DP-508 platform has 8 intensities, with 0 being dark and 7 being bright. If parameter omitted, assumed to be 7 (brightest). Modern devices may or may not emulate this behaviour.

Example:

	<FIP speed="2" intensity="6">SCROLLING MESSAGE</FIP>

TEXT

Draws text on graphics layer.

Notes:

Currently only 4 "fonts" are available, and they're all derivatives of Verdana, only with varying font sizes. Font 0 is default font (approximately 18 pixels tall) Font 3 is the largest (Approx. 44 pixels tall.) Pixel coordinates refer to top left corner of text, which is left-aligned. Please refer to appendix C for color palette table and 'pen' parameter syntax. There will be many more type options and custom fonts available in the near future.

Usage:

	<TEXT coords="x,y" [font="(0-3)"] [pen="color"]>

(...actual message text...)

</TEXT>

Parameters:

· coords
Pixel position of text. If you only specify an X,Y coordinate one line of text will be placed there but not wordwrapped. If you specify x,y,width,height a square box of wordwrapped scrollable text will displayed.

· pen
Color of text.

· shadowpen
Color of shadow behind text.

· blendpen
If writing on top of a non-transparent foreground color, this should be set to that color. E.g. if you are writing text on a blue button, set blendpen="42" (blue).

· backgroundcolor
Only used if you also specify width and height and use the scrolling functionality.

Example:

	<TEXT coords="101,180" font="1" pen="0">
Large text
</TEXT>

<TEXT coords="101,250" font="0" pen="31">
Small text
</TEXT>

Draws black text (large) at pixel coordinates (101,180) with font 1 and white text at pixel coordinates (101,250) with font 0

IMAGE

Draws a pre-cached GIF image on graphics layer.

Notes:

The x,y coordinates are specified in pixels within the 720x576 screen area. Images are typically buffered in ram once they've been shown once to speed up performance. The images must currently be .gif in the kml palette (beware of alpha - we recommend using the Tga2Gif tool.)

In the future we might add 24 and/or 32-bit png support and perhaps even jpeg support.

Usage:

	<IMAGE coords="x,y" src="name" />

Example:

	<IMAGE coords="74,84" src="logo.gif" />

Places the image "logo.gif" in the top left corner.

STOPMEDIA

Stops the currently playing media stream.

Example:

	<STOPMEDIA />

ERRORMEDIA

This is a debug function that you probably don't need to use ever.

Example:

	<ERRORMEDIA />

MENUSELECT

Activates specified menu item.

Usage:

	<MENUSELECT item="<id>" />

Example:

	<MENUSELECT item="one" />

Selects the menuitem labeled 'one'. If the menuitem has an ONHILITE event action block associated, this will execute. Typically, it will cause a state change in visible graphics to indicate that the menuitem has become activated, or selected. Similarly, if a menuitem was already selected (active) before the MENUSELECT command was executed, an UNHILITE event action block will be executed if associated with that menuitem. See the MENUITEM command for more info on this subject.

PLAYMEDIA

Activates playback of specified media content retrieved via http or from a file on a local file system. Buffering and playback starts immediately. Any audio or video media already playing will be stopped.

Video media content is rendered in a seperate video buffer, so that background jpeg images and overlay graphics layer and menu operation are not affected. This is different from the older KiSS products, where the jpeg background would be lost when playuing video.

Please refer to Encoding Video section for media compatibility information.

Usage:

	<PLAYMEDIA href="source" />

Parameters:

· href
Source of content stream or file

· coords
Optional x,y,width,height of the video playback

· drmurl
Pointer to license key, if required by the Windows Media™ media stream

· extensionoverride
Is a hack that helps the player determine file type. This only applies for .asf files.

Notes:

If you specify a PLAYMEDIA tag with only the coords attribute set, video position/size is set without interrupting video playback. If coords is omitted when starting new video playback, video size defaults to full-screen playback. Current spec says you have to use complete, absolute URLs when referring to the location of content.

Example: Playing an mp3 file

	<PLAYMEDIA href="http://www.host.com/media/test.mp3" />

This function can be used in association with the ONMEDIASTOP event. This allows application designers to specify a sequence of commands to be executed when the media streams is interrupted from the source or by user intervention (pressing STOP, etc)

Example: Windowed mode

	<PLAYMEDIA coords="300,200,160,90" />

After starting the playback of a video file, this will switch from fullscreen into windowed mode without interrupting playback.

SEEKMEDIA

Seekmedia is currently only tested on Windows Media files over the rtsp:// protocol. It performs both relative and absolute positioning in the stream, using either seconds or percent as time units. Please notice that smooth fast forwarding and rewinding is not possible when streaming.

Usage:

	<SEEKMEDIA offset="amount" />

Examples:

	<SEEKMEDIA offset="+90" /> (skips 90 sec. forwards)
<SEEKMEDIA offset="-5%" /> (skips 5 percent backwards)
<SEEKMEDIA offset="50%" /> (skips to middle of file/stream)
<SEEKMEDIA offset="120" /> (skips to 120 sec. absolute position)

SLEEP

This function causes the KML parser to pause rendering. If for some reason you need a KML page to show up gradually, you can insert small pauses. This is usually not a good idea, but this feature has been requested by 3rd party game developers.

Usage:

	<SLEEP timeout="ms" />

Parameters:

· timeout
Number of (approximate) milliseconds to wait

Action blocks & Events

Action blocks are collections of actions to be carried out when an associated event occurs. According to present specification, the action blocks are container tags with their attached command nodes isolated inside XML CDATA escape blocks. Please refer to W3C spec on CDATA for proper usage:

www.w3.org/TR/REC-xml#sec-cdata-sect

Most action blocks are tied to specific events and may only be attached to the main KMLPAGE node. Some action blocks are nested with their parent objects such as BUTTON and MENUITEM event types. Menuitems are further described later.

KEY

This is the way to make a certain button on the remote control do a certain thing. Notice the number "93". This is the code for the back button. For a complete list of remote button codes, refer to the list of key codes for the full list.

	<KEY id="93"><ONCLICK><![CDATA[
 <GOTO href=" ---go back url--- " />
]]></ONCLICK></KEY>

ONUNLOAD

Admittedly counter-intuitively labeled, executes when a GOTO command fetches another KML document. (GOTO causes the current KML document to unload.)

Suggested use: Stopping media playback, clearing screen, etc. This tag must be in the main part of the KML page (i.e. not inside an action block.) If omitted, nothing is executed at page the page unload event.

Usage:

	<ONUNLOAD><![CDATA[

(...commands to be executed...)

]]></ONUNLOAD>

Example:

	<ONUNLOAD><![CDATA[
<FILLRECT coords="0,0,719,479" pen="0" />
]]></ONUNLOAD>

Notes:

If you want to display an icon while the user waits for the next page to show up, this method should do the trick.

ONINTERVAL

Waits for x seconds where x is 100 msec.

Notice: You must not use this function on PlayerModel "DP-500", "DP-508", "DP-1500s", "DP-1504", "DP-1504s", "DP-50X" or a "DP-558" with firmware 1.0.6 or older, as these players will flood the server if they encounter this tag.

Example (repeat every 5 seconds):

	<ONINTERVAL interval='50'><![CDATA[
<FILLRECT coords='0,0,719,479' pen='249' />
]]></ONUNLOAD>

ONTIMER

Waits for x seconds where x is 1 msec. For archeologic reasons ONTIMER uses a different timescale than ONINTERVAL.

Notice: You must not use this function on PlayerModel "DP-500", "DP-508", "DP-1500s", "DP-1504", "DP-1504s", "DP-50X" or a "DP-558" with firmware 1.0.7 or older, as these players will flood the server if they encounter this tag.

Example (wait 5 seconds):

	<ONTIMER timeout='5000'><![CDATA[
<FILLRECT coords='0,0,719,479' pen='216' />
]]></ONTIMER>

ONMETADATA

Executes when a playing media stream delivers updated metadata information.

Notes:

Suggested use: Displaying updating meta data on screen during media playback. This action is never activated when no media streams are playing. It is called when metatag-carrying media stream stops for any reason.

Usage:

	<ONMETADATA><![CDATA[

(...commands to be executed...)

]]></ONMETADATA>

Example:

	<PLAYMEDIA href="http://somafm.com/secretagent.pls" />
<ONMETADATA><![CDATA[
<TEXT coords="100,100" font="0" pen="255">
<VAR_GET variable="metadata.title" /> </TEXT>
]]></ONMETADATA>

The above example updates whenever a new song is playing.

ONMEDIASTOPPED

Executes when a PLAYMEDIA file or stream playback completes.

Notes:

Suggested use: Returning user to different screen when media playback completes Can only occur when media is playing. OnMediaStopped will be aliased with ONMEDIASTOP in future KML versions. ONMEDIASTOPPED is to be deprecated.

Usage:

	<ONMEDIASTOPPED><![CDATA[

(...commands to be executed...)

]]></ONMEDIASTOPPED>

Example:

	<PLAYMEDIA href="http://host/mp3/domino.pls" />
<ONMEDIASTOPPED><![CDATA[
<TEXT coords="100,100" font="0" pen="255">
Media playback has ceased.
</TEXT>
]]></ONMEDIASTOPPED>

The above example prints a text on the screen when the media playback of a stream stops.

ON_EVENT

Executes when an event with the specified name is called, or when the contents of a variable with the same name as the specified event changes it's contents.

Usage:

	<ON_EVENT event="myevent"><![CDATA[

(...commands to be executed...)

]]></ON_EVENT>

Example:

	<ON_EVENT event="hello"><![CDATA[
<TEXT coords="100,100" font="0" pen="255">
<VAR_GET variable="hello" /> </TEXT>
]]></ON_EVENT>
<VAR_SET variable="hello" value="bla bla" />

The above example updates when the "hello" variable is set (in this case it happens immediately). Notice that the VAR_SET has to be below the definition of the ON_EVENT structure for this to work.

The _doc.paint event

There is a special event named _doc.paint which occurs whenever the client has damaged the contents of the foreground layer. This happens after an error message or when the on-screen keyboard goes away. The typical use is to redraw the foreground layer whenever this event occurs. Example:

	<ON_EVENT event="_doc.paint"><![CDATA[

(...code that redraws the foreground...)

]]></ON_EVENT>

Variables

VAR_SET

This sets a KML variable with the name specified. Among other things, this can be used to set default values of the content of the on-screen keyboard if brought up by the user.

Usage:

	<VAR_SET variable="variablename" value="whatever" />

Notes:

· Variable name must being with form. to be included in POST or GET.

· If the value entered is different from the variable's previous value, an event with the same name as the variable name is triggered

VAR_GET

This prints out the contents of the specified KML variable. Use in conjunction with a TEXT tag.

Usage:

	<VAR_GET variable="variablename" />

Example:

	<TEXT coords="100,100" font="0" pen="14">
<VAR_GET variable="form.myvariable" />
</TEXT>

VAR_INPUT

This brings up the on-screen keyboard. The text entered by the user is fed into a KML variable. When the user presses OK or Cancel, the keyboard is no longer there but is still visible on the screen until you erase the left-over graphics. Set up a _doc.paint event and put code in there that redraws the screen, to resolve this.

Usage:

	<VAR_INPUT variable="variablename" [password="true"] />

Notes:

· Variable name must being with form. to be included in POST or GET.

· Only use the password tag when entering passwords

· Remember to redraw the foreground on the _doc.paint event

· If the value entered is different from the variable's previous value, an event with the same name as the variable name is triggered

SUBMIT

Once you (or the user) has set some values to their desired values, you can submit these to the server in the same way that you do in HTML using post or get. Important things to understand here are:

· Only variables that begin with "form." are included in the submit'ed data.

· The "form." part of the string is stripped off when submiting.

· Each <SUBMIT> tag has it's own target url and choice of POST or GET method (unlike html.)

· "POST" or "GET" has to be in uppercase.

· You usually have to put the <SUBMIT> tag inside a menu structure, button action or similar, or else it will happen immediately on page load.

Usage:

	<SUBMIT method="POST/GET" target="url" />

Differences from html:

In HTML you must make a kind of scope outside any submit buttons using the <FORM> tag. We felt that this is rather limiting and not in compliance with what you typically need. That is why there is no <FORM> tag, and the method= and target= attributes have been moved to the SUBMIT actions themselves. This way you can easily send the user in different directions depending on what button is clicked.

Control Structures

This section addresses the more complex parts of KML where several tags address each other in various ways. This should enable you to figure out how to make menus, checkboxes, radiobuttons, links and more.

MENUITEM

Menuitems are special objects used to draw 'hot spots' for interactive menu navigation. They are comparable to DVD menu hotspots in terms of functionality. Up to 7 action blocks can be associated with any one menuitem: There's one action block for each of the four cursor key directions, so that makes four. These are labeled ONUP, ONDOWN, ONLEFT, ONRIGHT.

Then there are two action blocks representing activation and deactivation states of the menu item (Activation means the menu item has been selected. Deactivation means the menu item is no longer active - another item has been selected.) These two action blocks are labened ONHILITE and ONUNHILITE, and are primarily used to draw 'highlight' bars around active menu hotspots. The four cursour directions can be linked to run MENUSELECT on neighboring items.

Unless defined otherwise, ONDOWN and ONRIGHT are linked to the 'next' item in order of definition, and ONUP / ONLEFT links to 'previous' items. The automatic linking 'wraps' so when you press DOWN or RIGHT at the last item, the first item becomes active. UP or LEFT similarly makes the last item active when at the first item.

The final menuitem event action block is ONCLICK, and it's executed when the ENTER key is pressed on the remote control while the menuitem is highlighted.

Notes:

Menuitems can be attached only to the KMLPAGE node. There can be as many as 32 menuitems associated with a KMLpage. It is entirely optional whether to attach action blocks to a menuitem or not. When a page with menuitems are loaded, the ONUNHILITE event on every menuitem is executed once.

Usage:

	<MENUITEM id='name'>
 <ONHILITE><![CDATA[{event}]]></ONHILITE>
 <ONUNHILITE><![CDATA[{event}]]></ONUNHILITE>
 <ONLEFT><![CDATA[{event}]]></ONLEFT>
 <ONRIGHT><![CDATA[{event}]]></ONRIGHT>
 <ONUP><![CDATA[{event}]]></ONUP>
 <ONDOWN><![CDATA[{event}]]></ONDOWN>
 <ONCLICK><![CDATA[{event}]]></ONCLICK>
</MENUITEM>

Extended usage for KML 2.5:

In this example the menu item sets up different actions for Enter (key 115) and play (key 16387). All keys that have been defined globally can be overwritten locally for the specific menu item.

	<MENUITEM id='name'>
 <ONHILITE><![CDATA[{event}]]></ONHILITE>
 <ONUNHILITE><![CDATA[{event}]]></ONUNHILITE>
 <ONLEFT><![CDATA[{event}]]></ONLEFT>
 <ONRIGHT><![CDATA[{event}]]></ONRIGHT>
 <ONUP><![CDATA[{event}]]></ONUP>
 <ONDOWN><![CDATA[{event}]]></ONDOWN>
 <ONKEY id='115'>
 <ONCLICK><![CDATA[{event}]]></ONCLICK>
 </ONKEY>
 <ONKEY id='16387'>
 <ONCLICK><![CDATA[{event}]]></ONCLICK>
 </ONKEY>
</MENUITEM>

Example:

	<MENUITEM id='1'>

<ONCLICK><![CDATA[
<FILLRECT coords="60,200,300,45" pen="22" />
<TEXT coords="65,205" font="1" pen="255">One was clicked</TEXT>
]]></ONCLICK>

<ONHILITE><![CDATA[
<TEXT coords="60,100" font="0" pen="255">Item one is selected</TEXT>
<TEXT coords="60,130" font="0" pen="0">Item two is not selected</TEXT>
]]></ONHILITE>

<ONUNHILITE><![CDATA[
<FILLRECT coords="55,95,250,65" pen="22" />
]]></ONUNHILITE>

</MENUITEM>

<MENUITEM id='2'>

<ONCLICK><![CDATA[
<FILLRECT coords="60,200,300,45" pen="22" />
<TEXT coords="65,205" font="1" pen="255">Two was clicked</TEXT>
]]></ONCLICK>

<ONHILITE><![CDATA[
<TEXT coords="60,100" font="0" pen="0">Item one is not selected</TEXT>
<TEXT coords="60,130" font="0" pen="255">Item two is selected</TEXT>
]]></ONHILITE>

<ONUNHILITE><![CDATA[
<FILLRECT coords="55,95,250,65" pen="22" />
]]></ONUNHILITE>

</MENUITEM>

This example has two active menuitems. The cursor directions aren't specified by the KML code, so the menuitems are tied using only automatic bindings. Each of the menuitems have ONUNHILITE and ONHILITE events defined which alters the text to reflect the active state. Note, the 'menuitems' need not occupy distinct areas of the screen - multiple states can share one screen area.

TEXTSCROLL

Making the client word-wrap text and making it scroll a text area. This is one of the new functions added in KML 2.4.

Usage:

	<TEXT id="id" coords="x,y,width,height" lineheight="height">

(...text...)

</TEXT>

<TEXTSCROLL target="id" value="amount" />

The amount can be both positive and negative. Positive numbers scroll down, negative numbers scroll up. Line breaks (ascii character 10) inside the text are interpreted as line breaks, so watch out what you output.

Example:

The especially relevant parts are marked in orange. Relative URLs must be turned into absolute URLs:

	<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<KMLPAGE version="2.4"><FILLRECT coords="0,0,720,576" pen="0" />
<FILLRECT coords="200,73,350,22" pen="0" />
<TEXT coords="200,72" font="0" pen="255" shadowpen="16" blendpen="0">Scroll test</TEXT>

<TEXT id="blabla" coords="200,100,350,330" pen="255" backgroundpen="0" shadowpen="16" blendpen="0" lineheight="20">
This is just an example text that is so long that you will need to scroll to see all of it. There are two different types of terrain found on Tethys, one composed of densely cratered regions and the other consisting of a dark colored and lightly cratered belt that extends across the moon. The light cratering of this second region indicates that Tethys was once internally active, causing parts of the older terrain to be resurfaced. The exact cause of the darkness of the belt is unknown but a possible interpretation comes from recent Galileo orbiter images of Jupiter's moons Ganymede and Callisto, both of which exhibit light polar caps that are made from bright ice deposits on pole-facing slopes of craters. From a distance the caps appear brighter due to the thousands of unresolved ice patches in small craters present there. The Tethyan surface may have been formed in a similar manner, consisting of hazy polar caps of unresolved bright ice patches with a darker zone in between.</TEXT>

<KEY id="67"><ONCLICK><![CDATA[
 <TEXTSCROLL target="blabla" value="-10" />
]]></ONCLICK></KEY>
<KEY id="68"><ONCLICK><![CDATA[
 <TEXTSCROLL target="blabla" value="10" />
]]></ONCLICK></KEY>

<KEY id="74"><ONCLICK><![CDATA[
 <TEXTSCROLL target="blabla" value="-1" />
]]></ONCLICK></KEY>
<KEY id="75"><ONCLICK><![CDATA[
 <TEXTSCROLL target="blabla" value="1" />
]]></ONCLICK></KEY>

</KMLPAGE>

CYCLEITEM

Using cycle items you can make checkboxes, radio buttons and even things that resembles dropdowns in html. A cycleitem can have two or more states, who's appearance has pretty much no limits, as any piece of html can be executes on hilight and un-hilight of the state - just like a menu item. This is one of the new functions added in KML 2.4.

Usage:

	<CYCLEITEM value="value"><![CDATA[

(...action block...)

]]></CYCLEITEM>

The amount can be both positive and negative. Positive numbers scroll down, negative numbers scroll up. Line breaks (ascii character 10) inside the text are interpreted as line breaks, so watch out what you output.

Example:

The especially relevant parts are marked in orange. Relative URLs must be turned into absolute URLs:

	<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<KMLPAGE version="2.4"><FILLRECT coords="0,0,720,576" pen="0" />
<FILLRECT coords="200,71,400,22" pen="0" />
<TEXT coords="200,70" font="0" pen="29">Please turn the checkbox on/off.</TEXT>
<FILLRECT coords="200,101,400,22" pen="0" />
<TEXT coords="200,100" font="0" pen="29">The rightmost square does a POST request.</TEXT>
<ON_EVENT event="form.onoff"><![CDATA[<FILLRECT coords="414,400,15,18" pen="0" />
<TEXT coords="415,400" font="0" pen="29"><VAR_GET variable="form.onoff" /></TEXT>
]]></ON_EVENT>
<KEY id="93"><ONCLICK><![CDATA[<GOTO href=" ---go back url--- " />
]]></ONCLICK>
</KEY>
<MENUITEM id="0"><ONLEFT><![CDATA[<MENUSELECT item="0" />
]]></ONLEFT>
<ONRIGHT><![CDATA[<MENUSELECT item="1" />
]]></ONRIGHT>
<ONUP><![CDATA[<MENUSELECT item="0" />
]]></ONUP>
<ONDOWN><![CDATA[<MENUSELECT item="0" />
]]></ONDOWN>
<ONHILITE><![CDATA[<RECT coords="250,350,35,35" pen="29" />
<RECT coords="251,351,33,33" pen="29" />
<RECT coords="252,352,31,31" pen="29" />
<FIP speed="4" intensity="4">check me</FIP>
]]></ONHILITE>
<ONUNHILITE><![CDATA[<RECT coords="250,350,35,35" pen="16" />
<RECT coords="251,351,33,33" pen="16" />
<RECT coords="252,352,31,31" pen="16" />
]]></ONUNHILITE>
<ONCLICK><![CDATA[<GOTO href=" ---url to self--- " />
]]></ONCLICK>
</MENUITEM>
<MENUITEM id="1"><ONLEFT><![CDATA[<MENUSELECT item="0" />
]]></ONLEFT>
<ONRIGHT><![CDATA[<MENUSELECT item="2" />
]]></ONRIGHT>
<ONUP><![CDATA[<MENUSELECT item="1" />
]]></ONUP>
<ONDOWN><![CDATA[<MENUSELECT item="1" />
]]></ONDOWN>
<ONHILITE><![CDATA[<RECT coords="300,350,35,35" pen="29" />
<RECT coords="301,351,33,33" pen="29" />
<RECT coords="302,352,31,31" pen="29" />
<FIP speed="4" intensity="4">check me</FIP>
]]></ONHILITE>
<ONUNHILITE><![CDATA[<RECT coords="300,350,35,35" pen="16" />
<RECT coords="301,351,33,33" pen="16" />
<RECT coords="302,352,31,31" pen="16" />
]]></ONUNHILITE>
<ONCLICK><![CDATA[<GOTO href=" ---url to self--- " />
]]></ONCLICK>
</MENUITEM>
<MENUITEM id="2"><ONLEFT><![CDATA[<MENUSELECT item="1" />
]]></ONLEFT>
<ONRIGHT><![CDATA[<MENUSELECT item="3" />
]]></ONRIGHT>
<ONUP><![CDATA[<MENUSELECT item="2" />
]]></ONUP>
<ONDOWN><![CDATA[<MENUSELECT item="2" />
]]></ONDOWN>
<ONHILITE><![CDATA[<RECT coords="350,350,35,35" pen="29" />
<RECT coords="351,351,33,33" pen="29" />
<RECT coords="352,352,31,31" pen="29" />
<FIP speed="4" intensity="4">check me</FIP>
]]></ONHILITE>
<ONUNHILITE><![CDATA[<RECT coords="350,350,35,35" pen="16" />
<RECT coords="351,351,33,33" pen="16" />
<RECT coords="352,352,31,31" pen="16" />
]]></ONUNHILITE>
<ONCLICK><![CDATA[<GOTO href=" ---url to self--- " />
]]></ONCLICK>
</MENUITEM>
<MENUITEM id="3" variable="form.onoff"><ONLEFT><![CDATA[<MENUSELECT item="2" />
]]></ONLEFT>
<ONRIGHT><![CDATA[<MENUSELECT item="4" />
]]></ONRIGHT>
<ONUP><![CDATA[<MENUSELECT item="3" />
]]></ONUP>
<ONDOWN><![CDATA[<MENUSELECT item="3" />
]]></ONDOWN>
<CYCLEITEM value="A"><ONHILITE><![CDATA[<IMAGE coords="400,350" src="button1.gif" />
]]></ONHILITE>
<ONUNHILITE><![CDATA[<IMAGE coords="400,350" src="button2.gif" />
]]></ONUNHILITE>
</CYCLEITEM>
<CYCLEITEM value="B"><ONHILITE><![CDATA[<IMAGE coords="400,350" src="button3.gif" />
]]></ONHILITE>
<ONUNHILITE><![CDATA[<IMAGE coords="400,350" src="button4.gif" />
]]></ONUNHILITE>
</CYCLEITEM>
</MENUITEM>
<MENUITEM id="4"><ONLEFT><![CDATA[<MENUSELECT item="3" />
]]></ONLEFT>
<ONRIGHT><![CDATA[<MENUSELECT item="4" />
]]></ONRIGHT>
<ONUP><![CDATA[<MENUSELECT item="4" />
]]></ONUP>
<ONDOWN><![CDATA[<MENUSELECT item="4" />
]]></ONDOWN>
<ONHILITE><![CDATA[<RECT coords="450,350,35,35" pen="29" />
<RECT coords="451,351,33,33" pen="29" />
<RECT coords="452,352,31,31" pen="29" />
<FIP speed="4" intensity="4">submit h</FIP>
]]></ONHILITE>
<ONUNHILITE><![CDATA[<RECT coords="450,350,35,35" pen="16" />
<RECT coords="451,351,33,33" pen="16" />
<RECT coords="452,352,31,31" pen="16" />
]]></ONUNHILITE>
<ONCLICK><![CDATA[
 <SUBMIT method="POST" target=" ---url to self--- " />
]]></ONCLICK>
</MENUITEM>
<MENUSELECT item="2" />
</KMLPAGE>

ON-SCREEN KEYBOARD

Here's a full source listing on how to make an on-screen keyboard and make it submit data back to the server, using the <VAR_INPUT>, <SUBMIT> and <FUNCTION> tags.

	<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<KMLPAGE version="2.4">
<FILLRECT coords="0,0,720,576" pen="169" />
<MENUITEM id="0">
<ONLEFT><![CDATA[<MENUSELECT item="0" />]]></ONLEFT>
<ONRIGHT><![CDATA[<MENUSELECT item="0" />]]></ONRIGHT>
<ONUP><![CDATA[<MENUSELECT item="0" />]]></ONUP>
<ONDOWN><![CDATA[<MENUSELECT item="1" />]]></ONDOWN>
<ONHILITE><![CDATA[
<FILLRECT coords="66,237,312,31" pen="176" />
<RECT coords="66,237,312,31" pen="255" />
<RECT coords="67,238,310,29" pen="255" />
<RECT coords="68,239,308,27" pen="255" />
<TEXT coords="75,241" font="0" pen="29"><VAR_GET variable="60_txt" /></TEXT>
<FIP speed="4" intensity="4">LCD txt</FIP>
]]></ONHILITE>
<ONUNHILITE><![CDATA[
<FILLRECT coords="66,237,312,31" pen="176" />
<TEXT coords="75,241" font="0" pen="29"><VAR_GET variable="60_txt" /></TEXT>
]]></ONUNHILITE>
<ONCLICK><![CDATA[<VAR_INPUT variable="60_txt" />]]></ONCLICK>
</MENUITEM>
<MENUITEM id="1">
<ONLEFT><![CDATA[<MENUSELECT item="1" />
]]></ONLEFT>
<ONRIGHT><![CDATA[<MENUSELECT item="1" />
]]></ONRIGHT>
<ONUP><![CDATA[<MENUSELECT item="0" />
]]></ONUP>
<ONDOWN><![CDATA[<MENUSELECT item="2" />
]]></ONDOWN>
<ONHILITE><![CDATA[
<FILLRECT coords="66,297,312,31" pen="176" />
<RECT coords="66,297,312,31" pen="255" />
<RECT coords="67,298,310,29" pen="255" />
<RECT coords="68,299,308,27" pen="255" />
<TEXT coords="75,301" font="0" pen="29"><VAR_GET variable="120_txt" /></TEXT>
<FIP speed="4" intensity="4">LCD txt</FIP>
]]></ONHILITE>
<ONUNHILITE><![CDATA[<FILLRECT coords="66,297,312,31" pen="176" />
<TEXT coords="75,301" font="0" pen="29"><VAR_GET variable="120_txt" /></TEXT>
]]></ONUNHILITE>
<ONCLICK><![CDATA[<VAR_INPUT variable="120_txt" />]]></ONCLICK>
</MENUITEM>
<MENUITEM id="2">
<ONLEFT><![CDATA[<MENUSELECT item="2" />]]></ONLEFT>
<ONRIGHT><![CDATA[<MENUSELECT item="2" />]]></ONRIGHT>
<ONUP><![CDATA[<MENUSELECT item="1" />]]></ONUP>
<ONDOWN><![CDATA[<MENUSELECT item="3" />]]></ONDOWN>
<ONHILITE><![CDATA[
<FILLRECT coords="66,357,312,31" pen="176" />
<RECT coords="66,357,312,31" pen="255" />
<RECT coords="67,358,310,29" pen="255" />
<RECT coords="68,359,308,27" pen="255" />
<TEXT coords="75,361" font="0" pen="29"><VAR_GET variable="180_txt" /></TEXT>
<FIP speed="4" intensity="4">LCD txt</FIP>
]]></ONHILITE>
<ONUNHILITE><![CDATA[<FILLRECT coords="66,357,312,31" pen="176" />
<TEXT coords="75,361" font="0" pen="29"><VAR_GET variable="180_txt" /></TEXT>
]]></ONUNHILITE>
<ONCLICK><![CDATA[<VAR_INPUT variable="180_txt" />]]></ONCLICK>
</MENUITEM>
<MENUITEM id="3">
<ONLEFT><![CDATA[<MENUSELECT item="3" />]]></ONLEFT>
<ONRIGHT><![CDATA[<MENUSELECT item="3" />]]></ONRIGHT>
<ONUP><![CDATA[<MENUSELECT item="2" />]]></ONUP>
<ONDOWN><![CDATA[<MENUSELECT item="3" />]]></ONDOWN>
<ONHILITE><![CDATA[<FILLRECT coords="66,417,100,31" pen="196" />
<RECT coords="66,417,100,31" pen="255" />
<RECT coords="67,418,98,29" pen="255" />
<RECT coords="68,419,96,27" pen="255" />
<TEXT coords="75,421" font="0" pen="29">Submit</TEXT>
<FIP speed="4" intensity="4">LCD txt</FIP>
]]></ONHILITE>
<ONUNHILITE><![CDATA[<FILLRECT coords="66,417,100,31" pen="196" />
<TEXT coords="75,421" font="0" pen="29">Submit</TEXT>
]]></ONUNHILITE>
<ONCLICK><![CDATA[
<SUBMIT method="POST" target=" ---url to self--- " />
]]></ONCLICK>
</MENUITEM>
<MENUSELECT item="0" />
<ON_EVENT event="_doc.paint"><![CDATA[<FILLRECT coords="0,-48,720,576" pen="169" />
<TEXT coords="75,241" font="0" pen="29"><VAR_GET variable="60_txt" /></TEXT>
<TEXT coords="75,301" font="0" pen="29"><VAR_GET variable="120_txt" /></TEXT>
<TEXT coords="75,361" font="0" pen="29"><VAR_GET variable="180_txt" /></TEXT>
<TEXT coords="75,421" font="0" pen="29">Submit</TEXT>
]]></ON_EVENT>
</KMLPAGE>

Additional Functionality

Cookies

KML 2.4 has limited support for cookies. Currently the cookies expire when the device is turned off, but not at stand-by. This is useful for logins, as your login will basically stay until you unplug and move the device.

Setting and reading cookies in KML works just like in HTML. Refer to the programming manual of your server scripting language on more info on how to use cookies.

Encryption

The KML 2.4 client supports SSL encryption as https:// links just like normal web browsers. Whereas KML pages typically run on either port 8888 or port 80, ssl encrypted kml pages are usually exchanged on port 443 just like html.

Both POST and GET forms can be submitted in SSL encrypted mode. Remember that the URL string itself is not encrypted itself, so if the values posted contain sensitive information, you should use POST. This goes for both KML and HTML.

HTTP vs. RTSP Streaming

Older KiSS players only supported media playback over http. With the introduction of KML 2.4 playback of Windows Media .asx files over the rtsp protocol is now supported. If the player encounters an mms:// link it will assume that rtsp:// can be used, which is usually the case.

When streaming over http:// you can use pretty much any audio and video format.

Windows Media DRM

KML 2.4 capable devics are also Windows Media DRM compliant. The necessary functionality is reflected in the documentation for the PLAYMEDIA tag.

Developer Resources

KML palette

The 256 color palette available in KML is rather special because it has not just colors but also seperate alpha channel values for each entry in the palette index. The alpha value ranges from 0 to 255 where 0 means transparent and 255 means opaque. To see the palette available in KML, click KML palette.

For every line in the text file, the values are: RED GREEN BLUE ALPHA

Font spacing

KML currently does not support automatic line wrapping. To wrap lines yourself, you have to know how wide the characters are. The following code is an example of how to calculate the length of text.

Please notice that the following tables start with ascii character 32 (space). The use of character set iso-8859-1 is assumed. Characters not found in these tables should probably be assigned a default width of appx. 10 pixels.

	if ($_GET["PlayerModel"] != "DP-558")
{

$charwidth = array(
7, 7, 9, 16, 12, 20, 14, 5, 9, 9, 12, 16, 7, 9, 7, 9, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 9, 9, 16, 16, 16, 10, 19, 13, 13, 13, 15, 12, 11, 15, 14, 8, 9, 13, 11, 16, 14, 15, 11, 15, 13, 13, 12, 14, 13, 19, 13, 12, 13, 9, 9, 9, 16, 12, 12, 11, 12, 10, 12, 11, 7, 12, 12, 5, 7, 11, 5, 18, 12, 12, 12, 12, 8, 10, 7, 12, 11, 16, 11, 11, 10, 12, 9, 12, 16, 0, 12, 0, 5, 12, 9, 16, 12, 12, 12, 29, 13, 9, 20, 0, 0, 0, 0, 5, 5, 9, 9, 10, 12, 19, 12, 19, 10, 9, 19, 0, 0, 12, 0, 7, 12, 12, 12, 12, 9, 12, 12, 19, 10, 12, 16, 16, 19, 12, 10, 16, 10, 10, 12, 12, 12, 7, 12, 10, 10, 12, 19, 19, 19, 10, 13, 13, 13, 13, 13, 13, 19, 13, 12, 12, 12, 12, 8, 8, 8, 8, 15, 14, 15, 15, 15, 15, 15, 16, 15, 14, 14, 14, 14, 12, 12, 12, 11, 11, 11, 11, 11, 11, 18, 10, 11, 11, 11, 11, 5, 5, 5, 5, 12, 12, 12, 12, 12, 12, 12, 16, 12, 12, 12, 12, 12, 11, 12, 11);

} else
{

$charwidth = array(
7, 4, 9, 12, 12, 19, 13, 4, 7, 7, 11, 12, 7, 10, 5, 9, 11, 10, 11, 10, 12, 10, 11, 10, 11, 11, 5, 7, 13, 12, 13, 10, 16, 12, 11, 12, 12, 10, 9, 13, 11, 7, 10, 11, 9, 13, 11, 13, 10, 13, 12, 12, 12, 13, 12, 17, 12, 12, 12, 6, 9, 6, 11, 12, 7, 10, 10, 11, 10, 11, 7, 10, 10, 4, 7, 10, 4, 15, 10, 10, 10, 10, 9, 9, 9, 10, 10, 14, 13, 12, 9, 9, 4, 9, 14, 14, 16, 7, 4, 11, 11, 13, 14, 4, 10, 8, 19, 9, 11, 12, 8, 19, 13, 10, 12, 8, 8, 7, 10, 10, 5, 6, 6, 9, 11, 18, 18, 18, 9, 12, 12, 12, 12, 12, 12, 16, 12, 10, 10, 10, 10, 7, 7, 7, 8, 15, 11, 13, 13, 13, 13, 13, 10, 13, 12, 12, 12, 12, 12, 10, 10, 10, 10, 10, 10, 10, 10, 16, 9, 11, 11, 11, 11, 6, 5, 7, 7, 10, 10, 10, 10, 10, 10, 10, 12, 11, 10, 10, 10, 10, 10, 11, 10, 12, 10, 12, 10, 14, 12, 12, 10, 12, 10, 12, 10, 12, 10, 12, 14, 15, 12, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 13, 10, 13, 10, 13, 10, 13, 10, 11, 10, 15, 12, 8, 7, 7, 7, 7, 7, 9, 7, 7, 4, 14, 10, 8, 8, 11, 10, 10, 9, 5, 9, 6, 9, 8, 9, 7, 12, 8, 11, 10, 11, 10, 11, 10, 13, 11, 10, 13, 10, 13, 10, 13, 10, 18, 17, 11, 7, 11, 9, 11, 8, 12, 9, 12, 9, 12, 9, 12, 9, 12, 7, 12, 9, 12, 8, 12, 10, 12, 10, 12, 10, 12, 10, 12, 10, 12, 12, 16, 14, 12, 10, 12, 12, 9, 12, 9, 12, 9, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 14, 7, 7, 12);

}

GET string

The GET string always gets the following parameters attached by the KiSS kml client. The values shown after each parameter are examples:

· PlayerID=abcdefghijkl

· PlayerBrand=KiSS

· PlayerModel=DP-558

· PlayerLanguage=1

· PlayerFirmware=293

· ScreenWidth=720

· ScreenHeight=576

· ScreenForm=4x3

· UTC=7200

· KML=2.1

	PlayerLanguage =

0. en_GB ?

1. en_US

2. de_DE

3. fr_FR

4. da_DK

5. sv_SE

6. no_NO

7. fi_FI

8. es_ES

9. it_IT

10. nl_NL

11. pl_PL

12. pt_PT
	

	ScreenForm =

· 4x3 for normal / old TVs

· 16x9 for widescreen and high-def TVs

KML Key Codes

KML 2.5 and up understands all the following key codes. Older products only accept a subset of the below list. Key codes marked by "DP-558" are understood only by DP-558 and VR-558. Key codes marked by "Legacy" are understood only by DP-150x and DP-50x.

	2

	Skip forward

	DP-558

	3

	Skip backwards

	DP-558

	10

	Eject

	
	11

	Options

	
	12

	Multi digit

	
	20

	Next channel

	
	21

	Previous channel

	
	65

	Menu

	
	67

	Up

	
	68

	Down

	
	69

	Left

	
	70

	Right

	
	71

	Enter

	Legacy

	73

	Zero

	
	74

	One

	
	75

	Two

	
	76

	Three

	
	77

	Four

	
	79

	Five

	
	80

	Six

	
	81

	Seven

	
	82

	Eight

	
	83

	Nine

	
	84

	Title menu

	
	93

	Back

	
	94

	Rewind

	
	95

	F.Forward

	
	97

	Audio

	
	98

	Subtitle

	
	99

	Zoom

	
	100

	Angle

	
	102

	Mark

	
	103

	Erase

	
	105

	Volume up

	
	112

	Volume down

	
	115

	Enter

	DP-558

	117

	Input

	
	118

	TV

	
	119

	HDD

	
	120

	DVD

	
	121

	Store

	
	128

	Online

	
	129

	PC-Link

	
	768

	Setup

	
	17387

	Play

	
	16388

	Skip forward

	Legacy

	16389

	Skip backwards

	Legacy

	

Server Setup-Apache

These are the changes you have to do to your config files to be able to easily develop KML solutions.

httpd.conf (apache 1.3.x)

Port 8888
Listen 8888
<VirtualHost *:8888>
 ServerName put your domain name here
 DocumentRoot server-side path to your KML stuff
 ErrorDocument 404 /404/your error document
</VirtualHost>

Some people like to enable PHP parsing for .kml files, but the player will also recognize .php files or whatever you like. The player has no restrictions in terms of extensions on web pages.

ImageMagick.org under Microsoft Windows

The windows install of ImageMagick will potentially slow down your operating system and make the built-in system command "convert.exe" unavailable. This is due to an unfortunate clash in naming of executables. At KiSS we do not recommend tampering with your operating system, hence the following installation guide:

· Go to ImageMagick.org under Binary Releases and get ImageMagick-6.2.3-3-Q8-windows-dll.exe or any newer version

· Install the software

· Go to My Computer -> Properties -> Advanced -> Environment Variables

· Move "C:\Program Files\imagemagick-6.2.3-q8" to the end of the Path string.

· Rename "C:\Program Files\imagemagick-6.2.3-q8\convert.exe" into convert2.exe

· Reboot Windows

After this you can simply call "convert2" instead of "convert" from php to reach the convert command.

Targa to Gif conversion

Currently the hardware overlay containing graphics elements and text on all KiSS players, is limited to 8-bits (256 colors) with a fixed palette. This might change in the future.

This document will describe how to get stuff from photoshop into the final gif file in the unusual palette format used by the KiSS player. You can download the conversion software here or use the on-line batch converter.

The .tga files must be 24 or 32-bit. Creating 32-bit targa files in Photoshop is a bit tricky so i've added a guide on how to do this.

At last, a brief summary of the main converter application:

TGA2GIF.EXE

Version 2.0A Copyright 1990-1992 Stephen B. Coy. TGA mods by Drew Wells
Alpha channel support and FS dither improvements: Joachim Michaelis, 2004.

Usage: TGA2GIF <input targa file> <output gif file> [-d] [-k] [-o] [-r (#)] [-m (#)] [-f (#)] [-p pal_file]

where:

	-d

	use Floyd Steinberg dithering (recommended)

	-k

	use KML specific palette (recommended)

	-p <palette file>

	Palette file is 256 lines in RED GREEN BLUE ALPHA format like this:

50 60 70 0
80 100 120 127
120 130 160 255
etc...

Notice that for alpha: 0=transparent, 255=solid

	-o

	use ordered dithering

	
beta
.
.
.

	-r #

	add random noise +- #
defaults to +-8 if # not given

	
	-m

	choose palette with median cut
defaults to popularity

	
	-m #

	limit median cut pixel count to #

	
	-f #

	use a fixed palette, fast but (sometimes) ugly
determines which palette to use

0 = grey scale
1 = 8 red * 8 green * 4 blue shades
2 = 6 red * 7 green * 6 blue shades

	

	

KiSS suggests using this program like this:

	TGA2GIF -d -k input.tga output.gif

Or, if you don't want dithering, try this:

	TGA2GIF -k input.tga output.gif

Creating 32-bit Targa files

The basic idea is to get a Targa file that contains both color (in truecolor mode) and an alpha channel.

Adobe PhotoShop CS and 5.5

1. Create an image which contains transparent areas (if needed).

2. Choose Layer->Merge Visible (discard hidden stuff).

3. Choose Select->Load Selection and press OK

4. Choose Select->Save Selection and press OK

5. Deselect (Ctrl-D)

6. Choose Filter->Mask actions->no transparency (get this plugin here)

7. Flatten image (layer menu)

8. Save the image as Targa 32-bit (disable "RLE")

Adobe PhotoShop 7.0

Coming up...

Other

For other graphics applications, this entire process is usually much simpler. E.g. in ImageFX you can directly work with the same alpha channel that is automatically exported, when saving files that support an alpha channel.

Making graphics for TV

When making graphics for a TV screen, there are certain issues that you need to take into consideration. Here's a brief introduction that should hopefully help you avoid the most common pitfalls.

Interlace

A TV displays interlaced video. That means that for every screen update, only every 2nd horizontal line of pixels is shown. At the next screen update all the remaining pixels are displayed. This requires special attention when designing graphics for TV.

If you draw a horizontal line that is 1 pixel thick, it will only be displayed 25 times per second (30 for NTSC), whereas if you make it 2 pixels thick, it will be displayed 50 or 60 times per second! So basically anything that is only 1 pixel thick and horizontal, will flicker. Such flickering is rather unpleasant to look at.

There are different ways to avoid this problem. The most obvious chouse would be to make the lines thicker. But you can also simply blur the line in the vertical direction. In most decent graphics packages you can do this by using the function called "Convolution matrix". In Photoshop it is called Filter -> Other -> Custom for some reason.

	Tip:
The 5-5 weight is the most efficient convolution matrix possible with this technique.

If you want a de-flickering that doesn't move the image half a pixel, use the values 2-6-2 (and 10 for scale). This becomes more powerful if you use 2-4-2 and 8 for scale.

The Scale value is just all the other values added. Some programs can calculate this value automatically.

Low refresh rates

PAL TV displays 50 images per second, NTSC displays 60 per second. This is somewhat slower than normal computer displays, that usually display between 70 and 85 images per second. This basically means that TVs flicker more than computer screens.

So how do you keep this from being a problem? Well first we'll have to look at the way a TV works. Basically the image is displayed by the screen emitting light. This light is not steady but pretty much being turned on and off 50 or 60 times per second. The brighter the image you display is, the more light will be emitted, and the more flickering will occur. Also the larger areas you fill out with bright colors, the more flickering light will be emitted.

So if you want a flickerfree experience, don't fill up large portions of the screen area with very bright colors. Only use extreme white (255,255,255) for small parts of the image. If you want a bright background on the image, only get your RGB values appx. half way up. If nothing on the screen is brighter than this, it actually will look like it's white - and it'll flicker much less.

Composite signals and sudden color changes

ToDo: explain how e.g. red next to blue will make funny patterns etc.

Safe area

On the computer screen you're always guaranteed that the user can see all pixels on the entire screen area. On a TV it's different. Most older TVs do not have a square image. They're slightly rounded. And some of the image is actually being projected outside the visible area. To make things worse, no TVs are exactly alike, so you can't really know exactly where the visible area is.

So to be sure you're actually putting things in a place where people can see them, make sure to stay inside the so-called safe area. Here at KiSS we have this rule of thumb that says that if you stay within the center 85% of the image, you're in the safe area.

Example image for PAL (720 x 576)
Example image for NTSC (720 x 480)

Image testing tools

To help you determine if your graphics are suitable for TV usage, we at KiSS have developed a small selection of photoshop actions, that will test your image for some of the above issues. These tools are not scientifically perfect, but should give you a pointer in the right direction. They require Photohop 7 or 8 to run.

Download actions

Encoding video for KiSS players
General tips, AVI

When encoding .avi files, you can use AC3 or MP3 audio (The Lame and the Fraunhofer encoders give the best quality). We recommend only using constant bitrate audio (CBR) for the .avi format. You can read the full explanation here The manual for mplayer also mentions this as being not recommendable.

General tips, MPEG

You can also choose to make MPEG-1 or MPEG-2 files or MPEG-2 based VOB files.
MPEG-2 has much better support for interlaced content, but uses appx. twice the amount of space than XviD and DivX to achieve the same quality.

Platform specific

	
	KiSS DP-1500
KiSS DP-1504
KiSS DP-500
KiSS DP-508
	KiSS DP-1100
KiSS DP-558
KiSS VR-558
	KiSS DP-600
may change
in the future
	KiSS DP-1600
may change
in the future

	.mpg

MPEG-1
MPEG-2
	MPEG files will not work from KML.
	Any settings will do.
If you wish to preserve interlace we recommend MPEG-2.

	.avi

XviD
	Max 720x576 pixels.
Do not use quarter pixel motion estimation (QPel) or Global Motion Compensation (gmc)
	Do not use Global Motion Compensation for XviD (gmc)
	Do not use Global Motion Compensation for XviD (gmc)
Max height is 1064 pixels.

	.avi

DivX
	Max 720x576 pixels.
Do not use quarter pixel motion estimation (QPel)
	XviD seems slightly better for resolutions above 720x576
	Do not use Global Motion Compensation for XviD (gmc)
Max height is 704 pixels.

	.avi

x264
	not supported
	not supported
	not supported
	OK

	.mp4

x264
	not supported
	?
	?
	OK

	.mp4

Nero
	not supported
	Don't use any profiles above "Nero Standard Profile" and keep resolution at maximum 720x576 px.
	Don't use any profiles above "Nero Cinema Profile"

	.mkv
	not supported

	.ogm
	not supported

	.mov
	Apple QuickTime is not supported

�<!-- from the mencoder manual:

Please note that MEncoder currently cannot mux Vorbis audio tracks into the output file because it only supports AVI and MPEG containers as an output, each of which may lead to audio/video playback synchronization problems with some players when the AVI file contain VBR audio streams such as Vorbis.

-->

