Inhoudstabel

· Inhoudstabel 

· Inleiding 

· Waarom monitoren? 

· Monitor scripts
· Basis 

· Meetmethodes

· Actief en passief 

· Direct en indirect 

· Weet wat je meet
· Diskspace monitoring 

· Webserver monitoring 

· NTP monitoring 

· Leuke Nagios features
· Performance monitoring 

· Performance monitoring monitoring 

· Afwijkingen monitoren 

· Zelf scripts schrijven 

· Alert afhandeling 

· Besluit
Revisie 1.0 

Inleiding

Als je een aantal servers beheert, en/of een aantal kritische applicaties hebt draaien, is het natuurlijk aan te raden om deze in de gaten te houden, of te wel te "monitoren". 
Deze tekst gaat over monitoring in het algemeen, maar verwijst echter een aantal keer naar een volledig gratis, en "open", monitoringpakket: Nagios 

Deze tekst beschrijft niet het opzetten van een Nagios monitoring host, maar wel een aantal basis dingen waar je op moet letten als je aan monitoring wil doen en de leukere features van Nagios. 
Zoals bij zovele dingen in het leven zijn er een aantal goede manieren om iets te doen, maar ook heel veel verkeerde. Voor het monitoren van systemen is dit zeker waar. 

Verder vind je in deze tekst een heleboel gevarieerde tips en wordt er een heleboel praktijk ervaring gebundeld zodat je niet telkens opnieuw dezelfde fouten hoeft te maken. 

Waarom monitoren?

Theoretisch gezien heb je helemaal geen monitoring nodig. In een perfecte wereld zal hard- en software blijven doen wat ze doen. 
Helaas leven we niet in een perfecte wereld en monitoring dient dus enkel en alleen om situaties die NIET normaal zijn te kunnen merken. 

Monitoring is dus iets dat enkel dient om uitzonderingssituaties op te vangen. En dat is iets dat je je heel goed moet realiseren. 
Aangezien je op voorhand niet kan weten hoe iets zal mis gaan, dien je hiermee rekening te houden als je je eigen monitoring scripts maakt: Ze moeten werken in ALLE omstandigheden. Geen uitzonderingen. 

En geloof me vrij: Software en hardware kunnen op de meest interesante manieren falen. En dat is nu juist het probleem: je weet niet wat er mis kan gaan. Het enige dat je met zekerheid kan zeggen is dat er ooit wel eens iets mis zal gaan. 
Je moet als het ware paranoide zijn als je dingen checked. 

Een tweede reden om bepaalde dingen te gaan monitoren is om de gemeten gegevens te verwerken zodat daaruit informatie gewonnen kan worden. Die informatie kan dan bijvoorbeeld van belang zijn bij het toelichten van bepaalde problemen, of het plannen van hard- en software upgrades. 

Tenslotte is er nog het feit dat dingen meestal niet "zomaar" kapot gaan. Harde schijven bijvoorbeeld hebben al vele jaren een S.M.A.R.T mogelijkheid ingebouwd dat zelf bepaalde status informatie bijhoudt over het aantal leesfouten en dergelijke. 
Monitoring kan je helpen om een schijf te detecteren die op het punt staat om te falen. Op die manier kan je nog data redden, i.p.v. te wachten tot een onvermijdelijke schijfcrash. 

Goede monitoring laat toe om tijdig, soms zelfs pro-actief, op te treden zodat de schade zo veel mogelijk beperkt kan worden. 

Monitor scripts

Basis

Het hart van ieder monitorprogramma zijn de eigenlijke monitorscripts. 
Het verschil in monitoringsoftware is hoofdzakelijk te zien in de manier waarop de gemeten informatie wordt weergegeven. Die informatie komt echter steeds van je monitorscripts. Alhoewel dergelijke scripts meestal naar de achtergrond gedrukt worden, zijn ze een wezenlijk en een zeker niet onbelangrijk deel van de software. 
Bij goede software kan je makkelijk je eigen scripts toevoegen... 

Een monitor script is eigenlijk een script dat de eigenlijke test gaat doen of "iets" goed of slecht is. Er is bijvoorbeeld een monitor script om te kijken of er nog genoeg schijfruimte is. 
In Nagios kan een dergelijk monitor script de volgende statussen weergeven: 

· OK, als het script 100% zeker is dat alles OK is. 

· Warning, als er een bepaalde drempelwaarde overschreden is. vb: meer dan 90% van een partitie in gebruik 

· Critical, als een hogere drempelwaarde overschreden is. vb: meer dan 95% van een partitie in gebruik. 

· Unknown, als de schijfruimte om de een of andere reden niet gemeten kan worden. 

(Nagios is veel geavanceerder dan dit en maakt een onderscheid tussen de zogenaamde "host" en "service" checks. Momenteel gaan we hier niet dieper op in.) 

Een monitorscript krijgt ook maar een bepaalde periode om zijn tests te doen. Bij Nagios is dat standaard 10 seconden. Als je monitor meer dan 10 seconden nodig heeft om te kijken wat de status is van iets, dan ben je op de verkeerde manier aan het monitoren en dien je het anders aan te pakken, bijvoorbeeld door een andere meetmethode te gebruiken. 

Meetmethodes

Actief en passief

Traditioneel heb je de actieve en passieve meetmethode. 
Actief wil zeggen dat er op een actieve manier wordt nagegaan of alles nog in orde is. Er wordt bijvoorbeeld een commando uitgevoerd dat de vrije schijfruimte weergeeft. De output wordt dan "geparsed" en het monitorscript bepaalt of alles OK is of niet. 

Sommige dingen zijn echter erg moeilijk om op een actieve manier te meten. Deze dingen kunnen gelukkig wel vaak op een passieve mannier nagekeken worden. 
Enkele situaties waarin het makkelijker is om een passieve check te gebruiken: 

· Als er geen commando is om iets na te kijken 

· Als het commando een erg lange tijd nodig heeft om te voltooien 

· Als he commando zeer gevarieerde tijden nodig heeft om tot resultaten te leiden 

Een cliché voorbeeld van een passieve check is bijvoorbeeld het monitoren van een backup. 
Zoals in mijn backup script, Bacon, kun je in de meeste backup software een commando opgeven dat uitgevoerd zal worden bij een gelukte of mislukte backup. Dit commando kan een script zijn dat aan je monitoringsoftware vertelt wat de status van de backup was. 

Je moet hier wel aanvaarden dat je erop vertrouwt dat je backupsoftware op de een of andere manier "weet" dat er iets is misgegeaan. Veel software, waaronder ook zeer dure commerciële dingen, kunnen niet eens iets triviaals zoals een volle harde schijf afhandelen... 
Als je backup software niet meer werkt, en er dus ook geen statusveranderingen worden doorgegeven, blijft de laatste status behouden. In Nagios kun je met "freshness checks" eisen dat je, bijvoorbeeld, iedere 24 uur een status krijgt. Indien dit niet gebeurt, gaat de status automatisch naar "Unknown" zodat je weet dat er waarschijnlijk iets mis is met je backup. 

Direct en indirect

De meeste dingen kan je heel strait forward meten. Meestal is het een kwestie van een commando uitvoeren, het resultaten te parsen en aan de hand daarvan een beslissing nemen wat de huidige status is. 

Helaas is niet alles even simpel, en sommige dingen moet je onrechtstreeks meten, bijvoorbeeld als de te meten data op een andere machine staat. 
Je kan dan enkel met een tussenstap de meting uitvoeren, vandaar indirect. 

Alhoewel er op zich niets mis is om een indirecte meting uit te voeren, moet je je goed realiseren dat je dit ruimschoots binnen te 10 seconden moet kunnen doen. Daarom is het beter om zo veel mogelijk indirecte checks te vermijden en eventueel passieve checks te gebruiken. 
Soms kan je van een indirecte meting een directe meting maken door bijvoorbeeld gebruikt te maken van SNMP. Veel devices ondersteunen dit. 

Weet wat je meet

Als je iets op een deftige manier wil monitoren, moet je goed weten hoe je dat moet doen. 
Je moet goed begrijpen hoe de service die je monitored zich gedraagt en wat een normale status is. Dit is niet altijd even gemakkelijk, maar als je even logisch nadenkt kom je er wel uit. 

De onderstaande voorbeelden illustreren dat je bij het maken van een monitorscript heel erg goed moet nadenken of hetgeen je monitored ook wel hetgene is dat je denkt dat je aan het monitoren bent. 
Een denkfout is snel gemaakt en dan zal je monitor je niet noodzakelijk alarmeren als er in werkelijkheid iets gebeurt. 

Denk eraan: Monitoring is het meten van uitzonderingssituaties. Een monitorscript mag alleen een "OK" geven als het als het ware kan bewijzen dat alles OK is. 

Het valt me op hoeveel mensen een simpele "ping" gebruiken om te controleren of een machine nog OK is. Is het jou al ooit eens opgevallen dat sommige windowsmachines met een Blue Screen Of Death nog steeds reageren op ping? 
Ping is een manier om netwerkconnectiviteit te meten, en niets meer. Heel vaak wordt dit zelfs al afgehandeld in je TCP/IP stack, zonder dat je O.S. daar echt in hoeft tussen te komen. Gebruik Ping dus enkel en alleen om netwerkconnectiviteit te testen en niet de status van een machine. 

Diskspace monitoring

Het meten van de hoeveelheid plaats op een Linux/Unix systeem is vrij eenvoudig: 
"df -k", geeft je per partitie de vrije schijfruimte in kilobytes. Je kan dit dus gebruiken om de vrije schijfruimte in het oog te houden op een machine. 

Maar op een dag blijkt dat je geen nieuwe bestanden meer kan creëren en Nagios heeft je niet gewaarschuwd voor een gebrek aan schijfruimte. 
Hoe kan dat dan? 

Wel, de kans is dat als je een EXT2 filesystem gebruikt, je wel nog voldoende schijfruimte hebt, maar niet meer genoeg inodes. (De entries, als het ware, om bestanden weg te schrijven.) 
Je moet dus nog een tweede test voozien, df -i, als je ook wil weten of er nog genoeg inodes zijn. 

Waarschijnlijk zal dit nooit vookomen als je hebt nagedacht bij het formateren van je partitie, maar dit toont aan dat je wel even moet stilstaan bij wat je eigenlijk aan het monitoren bent, en wat je nodig hebt om te laten werken wat je in gedachten had. 
In dit geval monitor je enkel de vrije ruimte in de overtuiging dat dit genoeg is om nieuwe bestanden te kunnen creëren, maar je vergeet een aantal andere dingen die eigen zijn aan het filesystem dat je gebruikt. Verdere beperkingen zijn een gelimiteerd aantal bestanden per directory, gelimiteerd aantal subdirectories, aantal niveaus dat je directories kan maken; enz... Dit is vooral van belang als je applicaties hebt die veel (tijdelijke) bestanden aanmaken. 
In principe is het aan de applicatie om ervoor te zorgen dat deze naar behoren werkt en zich binnen de grenzen van de mogelijkheden van het bestandssysteem houdt. Maar, zoals gezegd, zijn er zeer veel aplicaties zonder enige ingebouwde beveiliging. 

Webserver monitoring

Een webserver draait meestal op poort 80 via het HTTP protocol en op poort 443 voor HTTPS. 

Een heel simplitische manier van webserver monitoring zou zijn om een TCP check monitor op te zetten om te zien of poort 80 en 443 nog reageren. 

Eenvoudig toch, niet? 

Niet zo snel. 
Wat als er nu iets mis gaat met je webserver en reageert met "500 Internal Server Error"? Hij reageert dus nog op poort 80, en Nagios zal je niet kunnen vertellen dat er iets fout is. 

Erger is het nog met HTTPS. (Je kan trouwens alle HTTP checks gebruiken door ze te tunnelen via STunnel, of andere dergelijk software.) 
HTTPS heeft nog meer monitoring nodig. Je moet bijvoorbeeld de geldigheid van de certificaten controleren. Hierbij kan er bijvoorbeeld een Warning gegenereerd worden door Nagios als je certificaat nog maar X dagen geldig is en een Critical alert als het certificaat daadwerkelijk verlopen is. 

En met al die extra checks denk je dan dat je je webserver 100% gemonitored hebt, niet? 
Neen, toch niet. Als je van een scripttaal gebruik maakt, bijvoorbeeld PHP, weet je nog steeds niet of PHP ook wel daadwerkelijk werkt. Praktijk ervaring leert dat soms de webserver nog draait, maar er wegens andere problemen, niet genoeg geheugen overblijft om de scriptparser te draaien... 
De makkelijkste manier om dergelijke dingen te monitoren is om een speciale webpagina te maken, met daarin een dergelijk script, dat steeds een bepaalde output geeft. Je monitor kan dan deze pagina opvragen en zien of het verkregen resultaat hetzelfde is dan het verwachte resultaat. 

NTP monitoring

Een van de voorwaarden om een hele reeks computers en hun logs te beheren is dat de klokken perfect gesynchroniseerd zijn. 
Het feit dat ze dat eens waren, geeft nog geen garanties dat dat in de toekomst ook nog zo zal zijn. Er moet dus gemonitored worden. 

Een van de meest zielige checks die ik ooit heb gezien om te kijken of de klokken gesynchroniseerd waren, was een simpele check om te kijken of er een process was dat "XNTP" heette. 
Zeer leuk, makkelijk, maar helaas totaal naast de kwestie. 

Weet wat je meet. 

Op sommige computers waren dergelijke processes "defunct", andere computers hadden dan perfect draaiende processen, maar geen toegang tot de tijdserver, enz... 
De monitoring deugde dus absoluut niet. 

Gelukkig zijn de mensen van Nagios veel slimmer en zit er reeds standaard een zeer degelijke NTP check bij. 
Deze maakt gebruik van het "ntpq" commando als dat aanwezig is. 

ntpq, de q staat voor query, kan je een heleboel informatie geven over de huidige NTP configuratie. o.a. of de computer gesynchroniseerd is met de tijdserver, en wat het tijdsverschil is. 

Door die informatie na te kijken, weet je niet alleen exact wat de huidige status is van de tijdsynchronisatie, maar je weet ook heel vaak wat he probleem is aangezien dat netjes vermeld wordt in de output van ntpq. 

Leuke Nagios features

Performance monitoring

Iedere test kan zonder problemen veranderd worden om ook de performance te meten. 
Bijvoorbeeld bij een PING test kan je de ping tijden als de performance zijn, bij een TCP poort check, de response tijd, bij een temperatuur te temperatuur zelf, enz... 

Deze data kan je dan mooi opslaan en in grafiekjes steken zodat je in een oogopslag zien of iets normaal is of niet, en natuurlijk om een geschiedenis te hebben van bepaalde data. 
Dergelijke data is onmisbaar bij het onderzoeken of iets normaal is of niet. Met noemt dit "baseline data". Stel dat je Unix machine een load heeft van 0.80. Je kan onmogelijk zeggen of dit normaal is of niet als je geen data hebt van de vorige dagen, vorige weken, ... 
Dergelijk performance monitoring is ook heel erg goed om een tendens te meten over een langere periode. Je kan bijvoorbeeld zien dat de load op dat Unix systeem in een jaar tijd geleidelijk gestegen is van 0.50 naar 0.80. Zo kan je upgrades, e.d. veel beter plannen. 

Performance monitoring monitoring

Je kan ook een leuk truukje toepassen als je performance monitoring gebruikt om meer proactief dingen aan te pakken. 

Laten we terug het voorbeeld nemen van diskspace monitoring. 
Om eerlijk te zijn is het domweg meten van de gebruikte capaciteit iets dat niet erg veelzeggend is. Je bent namelijk relatieve dingen aan het meten. 

90% van 2MB is namelijk veel minder dan 90% van een 200GB partitie. 
Bij de juiste partitionering wordt dit echter wel voor een deel gecorrigeerd aangezien je zelf, op een hopelijk intelligente manier, kiest of een partitie groot of klein wordt. 

Het is ook niet echt interesant om te weten dat je "/etc/" partitie aan 90% zit. (Bijvoorbeeld omdat je net een backup hebt gemaakt van een configuratiefile.) De /etc partitie zou normaal gezien toch niet vanzelf mogen groeien. 
Het is echter wel interesant als je /var/log partitie aan 90% zit. Maar nog veel interesanter is de groeisnelheid. 
Die groeisnelheid kan je makkelijk "berekenen" d.m.v. performance monitoring. Je neemt de laatste X metingen en trekt de lijn door. 

In plaats van te meten of een partitie aan 90% zit, kun je je meting baseren op de opgeslagen performance data. 
Op die manier sla je 3 vliegen in 1 klap: 

· Je wordt niet onnodig gealarmeerd door dingen die niet belangrijk zijn. 

· Aangezien de groeisnelheid gekend is, kun je eenvoudig een tijdstip berekenen waarop bijvoorbeeld je schijf vol zal zitten. Als dit binnen de week valt, kun je bijvoorbeeld de systeembeheerder alarmeren. 

· Hoe eerder het tijdstip, hoe Kritisher. Je hebt dus ook al automatisch een prioriteitensysteem! 

Afwijkingen monitoren

Je kan ook het verschil meten in de opgeslagen baseline data en de huidige performance waarden. Grote afwijkingen willen nog niet noodzakelijk zeggen dat er een probleem is, maar kunnen toch een voorteken zijn dat er iets op til is. 

Als je webserver het laatste jaar gemiddeld 12% CPU in beslag heeft genomen, en het laatste uur ineens 98%, dan reageert hij mischien nog perfect, maar de kans is toch reëel dat er iets mis is met je systeem. 

Of stel dat je een partitie hebt met alleen maar logfiles. Deze partie is 100GB en momenteel is er 2GB in gebruik. 
Je hebt een schijfruimtecheck die je alarmeert bij 90% in gebruik. 

Stel nu dat een bepaald programma heel er raar begint te doen en 10G data per uur begint te loggen. 
Op de traditionele manier zal dan je eerste alarm krijgen als je schijf voor 90% vol zit, en dat is pas bijna 9 uur later dan het probleem. 

Door nu grote afwijkingen in de performance data ook te monitoren kun je een monitor schrijven die reeds veel eerder een alarm genereerd. 
Stel dat je normaal gezien maximaal 500M logfiles in een half uur tijd hebt, dan zou je dus al na 30 minuten een alarm gekregen hebben en veel sneller kunnen ingrijpen. 

De meeste "rare dingen" zijn het gevolg van misconfiguraties en gebruikers(mis)handelingen. In dit geval wil "9 uur later" waarschijnlijk zeggen "buiten de kantooruren". 
Hoe eerder een check een probleem detecteerd, en dat is de essentie van monitoring, hoe eerder en goedkoper je het probleem kan herstellen. 

Zelf plugins schrijven

Natuurlijk bestaat er niet voor alles een gepaste plugin a.k.a. monitor script. 
Wegens het open karakter van Nagios is het zeer eenvoudig om zelf een plugin te schrijven, en daarover gaat dan ook dit deel van deze tekst. 

Nagios voert een pluging uit. De plugin doet zijn ding en de exit code bepaalde de status: 

· 0: OK 

· 1: Warning 

· 2: Critical 

· 3: Unknown 

Je kan een regel tekst meegeven die dan ook getoond zordt door Nagios, dit is meestal de reden waarom een bepaalde service zich in een bepaalde staat bevind. 

Om aan performance monitoring te doen, gebruik je een pipe symbool, ¦, in de output, gevolgd door de performance waarden. 
Meer informatie vind je in de, goede en zeer volledige, Nagios documentatie 

Een goede plugin begint met het denkwerk: Wat wil ik meten, en welke manier is daar het meest geschikt voor. 

Eens je daar uit bent, kun je beginnen met het schrijven van de check. Je kan best de volgende wenken in acht nemen: 

· In het begin ga je er van uit dat de status "critical" is. 

· Je voert het commando uit dat je gebruikt om de meting te doen. Je hebt de manual gelezen en weet welke exit codes het commando kan geven. Je script kan ze allemaal afhandelen. 

· Een fout bij het meten resulteert in een "unknown" status. 

· Indien je een meting hebt, ga je na of deze binnen de normen valt en ze je de overeenkomstige status: OK, warning of Critical. 

· Het monitoringscript geeft een duidelijke melding bij de output. 

· Ga na of je daadwerkelijk meet wat je denkt te meten. 

· Test je script!!! Je moet ervan uit gaan dat hetgeen je niet getest hebt, niet zal werken. 

Alert afhandeling

Meten is 1 ding, ervan op de hoogte gebracht worden en de problemen afhandelen is iets anders. 
Het heeft namelijk geen zin om fouten te detecteren, als er niemand verwittigd wordt. 

Gelukkig kun je Nagios zeer gemakkelijk uitbreiden. Als je Linux gebruikt, is het dus zeer eenvoudig om zelfs een klein scriptje te schrijven dat alles doe wat je kan bedenken. 
Ik krijg bijvoorbeeld standaard een mailtje, maar voor de meest kritische dingen ontvang ik een SMSje zodat ik onmiddellijk op de hoogte ben en de nodige acties kan ondernemen. 

Om niet overstelpt te worden met onnodig veel alrts per keer, is het handig om gebruik te maken van "parents" en "dependancies". 
Hiermee creëer je als het ware een topology van je netwerk, en dat is iets waar Nagios rekening mee houdt. 

Als om de een of andere reden je netwerk switch de geest geeft, wordt je niet gealarmeerd voor die XX andere machines die nu niet meer bereikbaar zijn. Dat is volkomen normaal en deze zijn "unreachable" voor Nagios. De switch is down, en dat is waarom Nagios je alarmeerd. 

In plaats van enkel notificaties te krijgen, kan je je monitorsoftware meestal ook zelf actie laten ondernemen, dit met een zogenaamde "Event Handler" zodat als er iets gebeurt je zelf acties kan laten ondernemen. Je zou bijvoorbeeld een bepaalde service kunnen laten herstarten in de hoop dat het de tweede keer beter zal gaan. Dit is echter af te raden omdat het eigenlijk probleem niet opgelost geraakt en je dan wel eens lui zou kunnen worden. 
Een beter manier om dergelijke event handlers te gebruiken is bijvoorbeeld om dingen aan te passen, een route bijvoorbeeld, zodat men geen last meer heeft van de downtime. 
Een andere manier is om bijvoorbeeld automatisch een statuspagina te laten zien op een webserver zodat alle gebruikers op de hoogte zijn van het probleem. 

Besluit

Monitoring software is in sommige situaties onmisbaar. 
Het kan je een heel eind op weg helpen om de oorzaak te vinden van problemen en zal een probleem zeer snel in de gaten hebben, mits de monitoring scripts goed werken en juist zijn opgezet. 

Ik hoop dat deze tekst je een beetje heeft doen nadenken. En natuurlijk dat je hier terug aan denkt mochts je ooit zelf monitoring scripts schrijven... 

Mocht je Nagios willen proberen, dan kan het dat hier terugvinden. 

