How to make a debian package in 10 minutes
Few things you need:
a. a debian/ubuntu system with apt
b. you need to know how to do a basic compile
c. a little project to make deb of, check if this project already build on: http://packages.ubuntu.com
d. few programes to install: apt-get install build-essential dh-make debhelper devscripts

Getting your little projcet source code
a. Download your project source code (usually tar.bz2/tar.gz)
b. Untar it:

tar.bz2 files:

Code:

tar xvjf myproject-1.2.tar.bz2

tar.gz files:

Code:

tar xvzf myproject-1.2.tar.gz

myproject-1.2.tar.bz2 - which means:
- The package name: myproject
- The version: 1.2

c. after extracting usually you will see a directory named: myproject-1.2
(by debian standards: the .tar.bz2 and the directory the extracted from it, should name like that always: packagename-version, if it doesn't, change it)

d. lets move this to our enviroment directory. for example:

Code:

cp -r myproject-1.2 /home/myusername/packages/myproject/

cp myproject-1.2.tar.bz2 /home/myusername/packages/myproject/

now, you should have:
/home/myusername/packages/myproject/myproject-1.2
/home/myusername/packages/myproject/myproject-1.2.tar.bz2

if you don't, make it happen.
change directory there

Code:

cd /home/myusername/packages/myproject/

Making a debian enviroment to the package
first thing you should check is: does myproject-1.2 have a configure file?
if it doesn't you should make it, but we will not talk about it in this guide

so we have a configure file, great. lets start.
a. change directory to you myproject-1.2 directory

Code:

cd myproject-1.2

dh_make is a tool that generates an enviroment to our package, lets use it:

Code:

dh_make -e youremail@site.org -f ../myproject-1.2.tar.bz2

 Type of package: single binary, multiple binary, library, or kernel module?

 [s/m/l/k]

(change yourmail@site.org to your real email ofcource)

now, it will ask if myproject-1.2 is a
s = [single binary] - a normal one package deb
l = [library] - choose that you are making package of something like libmyproject-dev
m = [multiple] - multiple binary packages
k = [kernel module] - a kernel module

now it will ask:

Code:

 Maintainer name : firstname lastname

 Email-Address : youmail@site.org

 Date : Thu, 21 Jul 2005 18:52:02 +0000

 Package Name : myproject

 Version : 1.2

 Type of Package : Single Binary

 Hit <enter> to confirm:

if all true, hit enter/return

Code:

ls

as you can see, dh_make created a directory named - debian.
there are many files in debian/ directory, files that you need to edit/remove.

Lets start with control.
Edit this file with your favorite editor (I usually use nano).

Code:

 1 Source: myproject

 2 Section: unknown

 3 Priority: optional

 4 Maintainer: firstname lastname <yourmail@site.org>

 5 Build-Depends: debhelper (>> 3.0.0)

 6 Standards-Version: 3.6.1

 7

 8 Package: myproject

 9 Architecture: any

 10 Depends: ${shlibs:Depends}

 11 Description: <insert up to 60 chars description>

 12 <insert long description, indented with spaces>

Line 1 - your source package name
Line 2 - what kind of package - games, sound, gnome, kde, x11...
Line 3 - How important is the package (you can keep like that)
Line 4 - you first, last name and your email on <>
Line 5 - all of the -dev packages that you need to compile this package, for exampe - libnothing-dev, you can check these depends with a script that Debian made:
-create new text file and paste this

Code:

 strace -f -o /tmp/log ./configure

 # or make instead of ./configure, if the package doesn't use autoconf

 for x in `dpkg -S $(grep open /tmp/log|\

 perl -pe 's!.* open\(\"([^\"]*).*!$1!' |\

 grep "^/"| sort | uniq|\

 grep -v "^\(/tmp\|/dev\|/proc\)") 2>/dev/null|\

 cut -f1 -d":"| sort | uniq`; \

 do \

 echo -n "$x (>=" `dpkg -s $x|grep ^Version|cut -f2 -d":"` "), "; \

 done

save this file on myproject-1.2 directory, call it "script".
run this script:

Code:

sh ../script

(the ../ is because I guess you are in debian/ direcotory)
now in the end of the script you will see all the depends of the package, copy to line 5 only the packages that end with -dev
Line 6 - the version of Debian Policy.
Line 7 - a space
Line 8 - the new package name, I keep it like the source one (Line 1)
Line 9 - Any which means every architecture that you are trying to compile on, if you want only amd64, put there amd64
Line 10 - run the script that we made again, and fill here every package that doesn't end with -dev.
Line 11 - a short description up to 60 chars.
Line 12 - as you can see, there is a space before the description, keep it like that!
and fill there a full description. if you want to do a space between 2 lines fill a . (dot).

After an edit:

Code:

 1 Source: myproject

 2 Section: gnome

 3 Priority: optional

 4 Maintainer: firstname lastname <yourmail@site.org>

 5 Build-Depends: debhelper (>> 3.0.0), libnothing-dev

 6 Standards-Version: 3.6.1

 7

 8 Package: myproject

 9 Architecture: amd64 i386 powerpc

 10 Depends: ${shlibs:Depends}, mozilla-firefox, gnome-core

 11 Description: My project is a web-browser.

 12 You can -

 * surf in the internet

 * enter to google site!

 * download ubuntu

 * buy from the internet an amd64 box!

 .

 * another text....

 Save. we move to the file: changelog, edit it.

Code:

 1 myproject (1.2-1) unstable; urgency=low

 2

 3 * Initial Release.

 4

 5 -- firstname lastname <yourmail@site.org> Thu, 21 Jul 2005 18:52:02 +0000

 6

Line 1 - you package name, version:

· "When working with a package which originated in Debian, use a version number derived from the Debian version number with ubuntu<revision> appended. i.e. Debian 1.0-2 becomes 1.0-2ubuntu1, followed by 1.0-2ubuntu2, etc.

· Packages not in debian yet should end with revision -0ubuntu1"

(from https://wiki.ubuntu.com/DeveloperResources)

, the dist - change to warty/hoary/breezy
Line 2 - a space
Line 3 - * what you did to the package, what is that for.
Line 4 - a space
Line 5 - your firstname, lastname, <email>, and a full date.

After an edit (if my package originated in Debian):

Code:

 1 myproject (1.2-1ubuntu1) hoary; urgency=low

 2

 3 * ubuntu linux amd64 package for hoary hedgedog.

 * a stable relese.

 4

 5 -- firstname lastname <yourmail@site.org> Thu, 21 Jul 2005 18:52:02 +0000

 6

After an edit (if my package did not originate in Debian):

Code:

 1 myproject (1.2-0ubuntu1) hoary; urgency=low

 2

 3 * ubuntu linux amd64 package for hoary hedgedog.

 * a stable relese.

 4

 5 -- firstname lastname <yourmail@site.org> Thu, 21 Jul 2005 18:52:02 +0000

 6

Save. lets move to the file: copyright, edit it.

Code:

 1 This package was debianized by firstname lastname <yourmail@site.org> on

 2 Thu, 21 Jul 2005 18:52:02 +0000

 3

 4 It was downloaded from <fill in ftp site>

 5

 6 Upstream Author(s): <put author(s) name and email here>

 7

 8 Copyright:

 9

 10 <Must follow here>

Line 1 - fill your firstname, lastname, <email>.
Line 2 - the full date
Line 3 - a space
Line 4 - where did you download the source from?
Line 5 - a space
Line 6 - The authors, usually the is a file named - AUTHORS on the main directory
Line 7 - a space
Line 8 - the licence type, who made the source, and when.
Line 9 - a space
Line 10 - the full licence

After an edit:

Code:

 1 This package was debianized by firstname lastname <yourmail@site.org> on

 2 Thu, 21 Jul 2005 18:52:02 +0000

 3

 4 It was downloaded from: http://thesource-site.com/files/

 5

 6 Upstream author: Author full name <hisemail@site.org>

 7

 8 This software is copyright (c) 2005-08 by Author full name, Obsession

 9 Development.

 10

 11 You are free to distribute this software under the terms of

 12 the GNU General Public License.

 13 On Debian systems, the complete text of the GNU General Public

 14 License can be found in the file `/usr/share/common-licenses/GPL'.

Save. if you are compiling this package by - ./configure; make; make install, you should not change the file rules, but lets explain:

Code:

 1 #!/usr/bin/make -f

 2 # Sample debian/rules that uses debhelper.

 3 # GNU copyright 1997 to 1999 by Joey Hess.

 4

 5 # Uncomment this to turn on verbose mode.

 6 #export DH_VERBOSE=1

 7

 8 # This is the debhelper compatibility version to use.

 9 export DH_COMPAT=4

 10

 11 CFLAGS = -g

 12 ifneq (,$(findstring noopt,$(DEB_BUILD_OPTIONS)))

 13 CFLAGS += -O0

 14 else

 15 CFLAGS += -O2

 16 endif

 17

 18 build: build-stamp

 19 build-stamp:

 20 dh_testdir

 21

 22 # Add here commands to compile the package.

 23 $(MAKE)

 24 #docbook-to-man debian/myproject.sgml > myproject.1

 25

 26 touch build-stamp

 27

 28 clean:

 29 dh_testdir

 30 dh_testroot

 31 rm -f build-stamp

 32

 33 # Add here commands to clean up after the build process.

 34 -$(MAKE) clean

 35

 36 dh_clean

 37

 38 install: build

 39 dh_testdir

 40 dh_testroot

 41 dh_clean -k

 42 dh_installdirs

 43

 44 # Add here commands to install the package into debian/gentoo.

 45 $(MAKE) install DESTDIR=$(CURDIR)/debian/myproject

 46

 47 # Build architecture-independent files here.

 48 binary-indep: build install

 49 # We have nothing to do by default.

 50

 51 # Build architecture-dependent files here.

 52 binary-arch: build install

 53 dh_testdir

 54 dh_testroot

 55 # dh_installdebconf

 56 dh_installdocs

 57 dh_installexamples

 58 dh_installmenu

 59 # dh_installlogrotate

 60 # dh_installemacsen

 61 # dh_installpam

 62 # dh_installmime

 63 # dh_installinit

 64 dh_installcron

 65 dh_installman

 66 dh_installinfo

 67 # dh_undocumented

 68 dh_installchangelogs ChangeLog

 69 dh_link

 70 dh_strip

 71 dh_compress

 72 dh_fixperms

 73 # dh_makeshlibs

 74 dh_installdeb

 75 # dh_perl

 76 dh_shlibdeps

 77 dh_gencontrol

 78 dh_md5sums

 79 dh_builddeb

 80

 81 binary: binary-indep binary-arch

 82 .PHONY: build clean binary-indep binary-arch binary install

Line 11 - add the cflags you are compiling with
Line 22 - add compiling commands
Line 33 - add clean commands
Line 44 - add installation commands

Save.

we did 80%.
now, there are some another files.
Lets edit the file: README.debian

Code:

myproject for Debian

<possible notes regarding this package - if none, delete this file>

 -- firstname lastname <yourmail@site.org>, Thu, 21 Jul 2005 18:52:02 +0000

if you don't have what to write, remove the file.
after edit:

Code:

myproject for Debian

this package is an open source code, do what ever you want.

feel free to send any bugs, questions to yourmail@site.org.

 -- firstname lastname <yourmail@site.org>, Thu, 21 Jul 2005 18:52:02 +0000

emacsen-*.ex - If your package doesn't supply Emacs files that can be bytecompiled at package installation time - Remove these files

init.d.ex - If your package is a daemon that needs to be run at system startup, keep this file, if not, remove.

manpage.1.ex, manpage.sgml.ex - if your program has man pages, you can remove these, if doesn't, you can fill it.

postinst.ex, preinst.ex, postrm.ex, prerm.ex
These files are called maintainer scripts. They are scripts which are put in the control area of the package and run by dpkg when your package is installed, upgraded or removed.

For now, you should try to avoid any manual editing of maintainer scripts if you possibly can because they tend to get complex

Building the .deb file

for full build of the package (build source, deb, clean...) run:

Code:

dpkg-buildpackage -rfakeroot

Instead if you have a big package, you can also build only the deb file with:

Code:

fake root debian/rules binary

If you don't have problems, you will get these 5 files on:
/home/myusername/packages/myproject/

- myproject_1.2.orig.tar.gz - the original source code tarball

- myproject_1.2-1.diff.gz - this file contains all the changes you made to the original source code.

- myproject_1.2-1.dsc - generated file from debian/control, contains summary of the contents of the source code

- myproject_1.2-1_amd64.deb - this is the debian binary package you made!

- myproject_1.2-1_amd64.changes - like a changlog file.

 You made your first deb!
please send every amd64 package that you made + .orig.tar.gz, .dsc, .diff to tamir@nooms.de. I will upload to my repository.

