Automatically switching between work proxy and no proxy

Submitted by harriseldon on Fri, 05/14/2010 - 03:05

· cntlm

· NetworkManager

· proxy

· tinyproxy

 Background

I have a personal laptop that I would like to seemlessly connect to my home network, work network, or other wireless network at a coffee shop. Network Manager provides a great way to do this, however at work, I am behind a proxy. It is not just any proxy, it is a NTLM proxy. I have used the great package cntlm for a long time to connect transparently and authenticate to my work proxy. For a long time I was manually starting and stopping cntlm and changing the computer's proxy settings. I had a special script that would rotate the proxy auto-configuration files upon connect and disconnect and another script that would set the environment variables when launching applications that do not support pac files like wget. The problem was that it was too manual. Some applications worked well, others did not.

I am currently running Kubuntu 10.04, however this tutorial should work with any distribution. I have Network Manager running, but using wicd would also work. Wicd has scripts per connection, while Network Manager has global scripts, but the contents in the script will be similar.

Packages Used

CNTLM
tinyproxy

The Setup

Install the cntlm package. It should be part of your distribution. There are plenty of tutorials on-line for setting up cntlm. The key here is to make sure that it does not start at boot. Cntlm will fail to start if it cannot connect your ntlm proxy. On Debian derivatives like Ubuntu, you can use the following command to do this:

sudo update-rc.d -f cntlm remove

This tells the system to remove cntlm from all runlevels, however the script will still remain in /etc/init.d. By using -f you can bypass the default check to make sure that it has been removed from /etc/init.d.

Install the tinyproxy package. Tinyproxy will by default listen on port 8888. This is fine. Later we will change the configuration files for tinyproxy. For now this is ok in the default manner. The key feature of tinyproxy that is required is that it can forward requests to another proxy, in our case cntlm.

Now we will create two tinyproxy configuration files. One file will be for the work network that uses cntlm. The other will be for networks without a proxy. I put my configuration files in /etc/tinyproxy/.

sudo mkdir -p /etc/tinyproxy

sudo cp /etc/tinyproxy.conf /etc/tinyproxy_work.conf

sudo sp /etc/tinyproxy.conf /etc/tinyproxy_home.conf

Now we have two configuration files that are a copy of the default. We will change tinyproxy_work.conf to access our work proxy. Here are some samples of what you can add:

sudo editor /etc/tinyproxy/tinyproxy_work.conf

find the section regarding upstream and add the following:

#forward requests to cntlm running on port 3128

upstream localhost:3128

#do not forward work domains

#change these to meet your requirements

no upstream ".workdomain.com"

no upstream "10.0.0.0/8"

 You can leave /etc/tinyproxy_home.conf as is. Now remove the default configuration file.

sudo rm /etc/tinyproxy.conf

Then set the tinyproxy_home.conf as the current configuration using a soft link.

sudo ln -s /etc/tinyproxy/tinyproxy_home.conf /etc/tinyproxy.conf

Now reload the configuration for tinyrpoxy. See your distribution's instructions for this. On Ubuntu, you can use: sudo service tinyproxy reload.

Linking it all together

 Each time Network Manager connects or disconnects from a network, it will run the scripts in /etc/NetworkManager/dispather.d. We need to add a custom script here to start or stop the cntlm proxy and link the tinyproxy.conf to the appropriate file. Instead of putting all of the code directly in the dispatcher script, I have created a separate script file. This way I can call it manually if needed.

/usr/local/sbin/setproxy

This script will take one parameter than can be on, off, or anything else. On will start the cntlm proxy, off will turn it off, and anything else will just toggle it between on and off.

Here is the contents of this script: You can create it via sudo editor /usr/local/sbin/setproxy
#!/bin/bash

if [-e "/etc/tinyproxy.conf"]; then

 rm /etc/tinyproxy.conf

fi
function proxyon {

 ln -s /etc/tinyproxy/tinyproxy_work.conf /etc/tinyproxy.conf

 service tinyproxy reload

 startcntlm
}
function proxyoff {

 ln -s /etc/tinyproxy/tinyproxy_home.conf /etc/tinyproxy.conf

 service tinyproxy reload

 stopcntlm
}
function proxytoggle {

 proxypid=`pidof cntlm`

 if ["A$proxypid" = "A"]; then

 proxyon

 else

 proxyoff

 fi

}

case "${1}" in

 on)

 proxyon

 ;;

 off)

 proxyoff

 ;;

 *)

 proxytoggle

esac

Now make it executable by root only: sudo chmod u+x /usr/local/sbin/setproxy.

Notice that there are 2 other scripts used within this script, namely startcntlm and stopcntlm.

Create the file /usr/local/sbin/startcntlm just like the above with the following contents and make it executable by root:

#! /bin/bash

1) Start daemon cntlmd (forwards proxy

requests)

/usr/sbin/cntlm -U USERID -c /etc/cntlm.conf

/usr/local/sbin/showproxynotification
Replace USERID with the user name of your user. This will make cntlm run as that user instead of root.

Create the file /usr/local/sbin/stopcntlm with the following contents and make it executable by root:
#! /bin/bash

1) Stop the daemon cntlmd (forwards proxy

requests)

killall cntlm

/usr/local/sbin/showproxynotification
The script showproxynotification will just a system notification so that I can see which network is active. It uses a very neat trick to use dbus to send a message over the session bus of another user. It is targeted at KDE, but it can work with your desktop environment with a little modication.

Create the file /usr/local/sbin/showproxynotification and make it executable with the following contents:

#!/bin/bash

#get the dbus_session_address and x display for kwin user

kwinpid=`pidof kwin`

DBUS_SESSION_BUS_ADDRESS="`cat /proc/$kwinpid/environ | tr '\0' '\n' | grep -i DBUS_SESSION_BUS_ADDRESS | sed s/DBUS_SESSION_BUS_ADDRESS=//`"

DISPLAY="`cat /proc/$kwinpid/environ | tr '\0' '\n' | grep -i DISPLAY | sed s/DISPLAY=//`"

#get the correct user for x session

currentuser=`cat /proc/$kwinpid/environ | tr '\0' '\n' | grep -i "USER=" | sed s/USER=//`
#send the reset message

#determine if either work or home proxy is active

proxy=`ls -lh /etc/tinyproxy.conf | cut -d" " -f10 | cut -d"_" -f2 | cut -d"." -f1`

#send the notification

sudo -u $currentuser -i DISPLAY=$DISPLAY "kdialog --passivepopup 'Proxy Refreshed: $proxy' --title 'Proxy Settings' 5"

 Almost there ... Now the network should automagically switch between your work and home, but all of your applications now need to know that all requests should go through our local tinyproxy. To do this, we will use the environment variables http_proxy, https_proxy, and ftp_proxy. Most programs will use these automatically if they are present. We will make these environment variables active for all use by using /etc/profile. In Ubuntu, all scripts in /etc/profile.d are executed as if they are part of /etc/profile and /etc/profile is ran by each user that creates a new session.

Create a new file /etc/profile.d/proxy.sh with the following contents
#proxy settings for tinyproxy

export http_proxy="http://localhost:8888"

export https_proxy="https://localhost:8888"

export ftp_proxy="ftp://localhost:8888"
export HTTP_PROXY="HTTP://LOCALHOST:8888"

export HTTPS_PROXY="https://localhost:8888"

export FTP_PROXY="ftp://localhost:8888"

I used both upper and lowercase because I noticed that some programs are picky. Now logout and back in. Then this new settings will be in effect. Now change your KDE or GNOME or other environment settings to use the environment variables for determining the proxy.

One last thing. I noticed that apt was not using these proxy settings, so we need to also tell apt to use the proxy. You can use the following command:

echo Acquire::http::Proxy "http://localhost:8888" | sudo tee /etc/apt/apt.conf.d/98proxy

This is a quick way to create a file as root via sudo. The tee command outputs standard in and also sends it to a file.

That's it! You now have a system that will transparently switch between your work proxy running cntlm and your home network without a proxy setup.

